Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 609(7929): 1012-1020, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131015

RESUMO

Medulloblastoma, a malignant childhood cerebellar tumour, segregates molecularly into biologically distinct subgroups, suggesting that a personalized approach to therapy would be beneficial1. Mouse modelling and cross-species genomics have provided increasing evidence of discrete, subgroup-specific developmental origins2. However, the anatomical and cellular complexity of developing human tissues3-particularly within the rhombic lip germinal zone, which produces all glutamatergic neuronal lineages before internalization into the cerebellar nodulus-makes it difficult to validate previous inferences that were derived from studies in mice. Here we use multi-omics to resolve the origins of medulloblastoma subgroups in the developing human cerebellum. Molecular signatures encoded within a human rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar brush cell expression profiles that are maintained in group 3 and group 4 medulloblastoma, suggesting a convergent basis. A systematic diagnostic-imaging review of a prospective institutional cohort localized the putative anatomical origins of group 3 and group 4 tumours to the nodulus. Our results connect the molecular and phenotypic features of clinically challenging medulloblastoma subgroups to their unified beginnings in the rhombic lip in the early stages of human development.


Assuntos
Linhagem da Célula , Neoplasias Cerebelares , Meduloblastoma , Metencéfalo , Animais , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/embriologia , Neoplasias Cerebelares/patologia , Cerebelo/embriologia , Humanos , Meduloblastoma/classificação , Meduloblastoma/embriologia , Meduloblastoma/patologia , Metencéfalo/embriologia , Camundongos , Neurônios/patologia , Estudos Prospectivos
2.
Nature ; 530(7588): 57-62, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26814967

RESUMO

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Meduloblastoma/classificação , Meduloblastoma/patologia , Fatores de Transcrição/metabolismo , Animais , Neoplasias Cerebelares/classificação , Feminino , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Genes Reporter/genética , Humanos , Masculino , Meduloblastoma/genética , Camundongos , Reprodutibilidade dos Testes , Peixe-Zebra/genética
3.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919542

RESUMO

We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix-loop-helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons' fate into "hair cells", highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of "intraganglionic" HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.


Assuntos
Células Ciliadas Auditivas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cóclea/citologia , Cóclea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurogênese/genética , Neurogênese/fisiologia , Fatores de Transcrição/genética
4.
Dev Biol ; 444 Suppl 1: S14-S24, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447907

RESUMO

Wilhelm His (1831-1904) provided lasting insights into the development of the central and peripheral nervous system using innovative technologies such as the microtome, which he invented. 150 years after his resurrection of the classical germ layer theory of Wolff, von Baer and Remak, his description of the developmental origin of cranial and spinal ganglia from a distinct cell population, now known as the neural crest, has stood the test of time and more recently sparked tremendous advances regarding the molecular development of these important cells. In addition to his 1868 treatise on 'Zwischenstrang' (now neural crest), his work on the development of the human hindbrain published in 1890 provided novel ideas that more than 100 years later form the basis for penetrating molecular investigations of the regionalization of the hindbrain neural tube and of the migration and differentiation of its constituent neuron populations. In the first part of this review we briefly summarize the major discoveries of Wilhelm His and his impact on the field of embryology. In the second part we relate His' observations to current knowledge about the molecular underpinnings of hindbrain development and evolution. We conclude with the proposition, present already in rudimentary form in the writings of His, that a primordial spinal cord-like organization has been molecularly supplemented to generate hindbrain 'neomorphs' such as the cerebellum and the auditory and vestibular nuclei and their associated afferents and sensory organs.


Assuntos
Crista Neural/citologia , Rombencéfalo/citologia , Rombencéfalo/embriologia , Animais , Evolução Biológica , Padronização Corporal , Diferenciação Celular , Cerebelo , Gânglios Espinais , Camadas Germinativas , História do Século XVII , História do Século XVIII , Humanos , Crista Neural/embriologia , Tubo Neural , Neurônios , Organogênese , Rombencéfalo/fisiologia
5.
J Neurosci ; 36(9): 2691-710, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26937009

RESUMO

The brainstem contains diverse neuronal populations that regulate a wide range of processes vital to the organism. Proper cell-fate specification decisions are critical to achieve neuronal diversity in the CNS, but the mechanisms regulating cell-fate specification in the developing brainstem are poorly understood. Previously, it has been shown that basic helix-loop-helix transcription factor Ptf1a is required for the differentiation and survival of neurons of the inferior olivary and cochlear brainstem nuclei, which contribute to motor coordination and sound processing, respectively. In this study, we show that the loss of Ptf1a compromises the development of the nucleus of the solitary tract, which processes viscerosensory information, and the spinal and principal trigeminal nuclei, which integrate somatosensory information of the face. Combining genetic fate-mapping, birth-dating, and gene expression studies, we found that at least a subset of brainstem abnormalities in Ptf1a(-/-) mice are mediated by a dramatic cell-fate misspecification in rhombomeres 2-7, which results in the production of supernumerary viscerosensory and somatosensory neurons of the Lmx1b lineage at the expense of Pax2(+) GABAergic viscerosensory and somatosensory neurons, and inferior olivary neurons. Our data identify Ptf1a as a major regulator of cell-fate specification decisions in the developing brainstem, and as a previously unrecognized developmental regulator of both viscerosensory and somatosensory brainstem nuclei. SIGNIFICANCE STATEMENT: Cell-fate specification decisions are critical for normal CNS development. Although extensively studied in the cerebellum and spinal cord, the mechanisms mediating cell-fate decisions in the brainstem, which regulates a wide range of processes vital to the organism, remain largely unknown. Here we identified mouse Ptf1a as a novel regulator of cell-fate decisions during both early and late brainstem neurogenesis, which are critical for proper development of several major classes of brainstem cells, including neurons of the somatosensory and viscerosensory nuclei. Since loss-of-function PTF1A mutations were described in human patients, we suggest Ptf1a-dependent cell-fate misspecification as a novel mechanism of human brainstem pathology.


Assuntos
Vias Aferentes/fisiologia , Tronco Encefálico/embriologia , Tronco Encefálico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Animais , Padronização Corporal/genética , Tronco Encefálico/citologia , Bromodesoxiuridina/metabolismo , Caspase 3/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Neurogênese/genética , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 111(17): E1777-86, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733890

RESUMO

Model organism studies have demonstrated that cell fate specification decisions play an important role in normal brain development. Their role in human neurodevelopmental disorders, however, is poorly understood, with very few examples described. The cerebellum is an excellent system to study mechanisms of cell fate specification. Although signals from the isthmic organizer are known to specify cerebellar territory along the anterior-posterior axis of the neural tube, the mechanisms establishing the cerebellar anlage along the dorsal-ventral axis are unknown. Here we show that the gene encoding pancreatic transcription factor PTF1A, which is inactivated in human patients with cerebellar agenesis, is required to segregate the cerebellum from more ventral extracerebellar fates. Using genetic fate mapping in mice, we show that in the absence of Ptf1a, cells originating in the cerebellar ventricular zone initiate a more ventral brainstem expression program, including LIM homeobox transcription factor 1 beta and T-cell leukemia homeobox 3. Misspecified cells exit the cerebellar anlage and contribute to the adjacent brainstem or die, leading to cerebellar agenesis in Ptf1a mutants. Our data identify Ptf1a as the first gene involved in the segregation of the cerebellum from the more ventral brainstem. Further, we propose that cerebellar agenesis represents a new, dorsal-to-ventral, cell fate misspecification phenotype in humans.


Assuntos
Tronco Encefálico/patologia , Linhagem da Célula , Cerebelo/anormalidades , Cerebelo/patologia , Fatores de Transcrição/deficiência , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Glutamina/metabolismo , Humanos , Camundongos , Modelos Biológicos , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
7.
Nat Genet ; 40(9): 1065-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19165920

RESUMO

CASK is a multi-domain scaffolding protein that interacts with the transcription factor TBR1 and regulates expression of genes involved in cortical development such as RELN. Here we describe a previously unreported X-linked brain malformation syndrome caused by mutations of CASK. All five affected individuals with CASK mutations had congenital or postnatal microcephaly, disproportionate brainstem and cerebellar hypoplasia, and severe mental retardation.


Assuntos
Tronco Encefálico/anormalidades , Cerebelo/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Guanilato Quinases/genética , Microcefalia/genética , Mutação , Pré-Escolar , Orelha/anormalidades , Feminino , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína Reelina , Síndrome
8.
Cerebellum ; 14(3): 292-307, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626522

RESUMO

This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic, and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei, and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber-Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1 MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function.


Assuntos
Ataxia/patologia , Córtex Cerebelar/citologia , Camundongos Mutantes Neurológicos , Morfogênese , Degeneração Neural/psicologia , Células de Purkinje/patologia , Animais , Ataxia/fisiopatologia , Axônios/patologia , Dendritos/patologia , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
9.
Development ; 138(6): 1207-16, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21307096

RESUMO

Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the developmental basis of this clinically important congenital malformation. Here, we show that reduced cerebellar size in Zic1 and Zic4 mutants results from decreased postnatal granule cell progenitor proliferation. Through genetic and molecular analyses, we show that Zic1 and Zic4 have Shh-dependent function promoting proliferation of granule cell progenitors. Expression of the Shh-downstream genes Ptch1, Gli1 and Mycn was downregulated in Zic1/4 mutants, although Shh production and Purkinje cell gene expression were normal. Reduction of Shh dose on the Zic1(+/-);Zic4(+/-) background also resulted in cerebellar size reductions and gene expression changes comparable with those observed in Zic1(-/-);Zic4(-/-) mice. Zic1 and Zic4 are additionally required to pattern anterior vermis foliation. Zic mutant folial patterning abnormalities correlated with disrupted cerebellar anlage gene expression and Purkinje cell topography during late embryonic stages; however, this phenotype was Shh independent. In Zic1(+/-);Zic4(+/-);Shh(+/-), we observed normal cerebellar anlage patterning and foliation. Furthermore, cerebellar patterning was normal in both Gli2-cko and Smo-cko mutant mice, where all Shh function was removed from the developing cerebellum. Thus, our data demonstrate that Zic1 and Zic4 have both Shh-dependent and -independent roles during cerebellar development and that multiple developmental disruptions underlie Zic1/4-related DWM.


Assuntos
Cerebelo/anormalidades , Cerebelo/embriologia , Síndrome de Dandy-Walker/embriologia , Síndrome de Dandy-Walker/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Proliferação de Células , Cerebelo/metabolismo , Cerebelo/patologia , Síndrome de Dandy-Walker/metabolismo , Síndrome de Dandy-Walker/patologia , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Humanos , Camundongos , Camundongos Knockout , Tamanho do Órgão/genética , Gravidez , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
10.
Am J Med Genet A ; 161A(8): 1833-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23813913

RESUMO

Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34 additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most commonly in those with duplications of YWHAE and flanking genes such as CRK. The typical neurobehavioral phenotype was usually seen in those with the larger duplications. We did not confirm the association of early overgrowth with involvement of YWHAE and CRK, or growth failure with duplications of LIS1. Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Proteínas 14-3-3/genética , Encéfalo/anormalidades , Transtornos do Comportamento Infantil/patologia , Transtornos Globais do Desenvolvimento Infantil/patologia , Cromossomos Humanos Par 17/genética , Duplicação Gênica , Proteínas Associadas aos Microtúbulos/genética , Adolescente , Adulto , Encéfalo/patologia , Criança , Transtornos do Comportamento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fenótipo
11.
Proc Natl Acad Sci U S A ; 107(23): 10725-30, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20498066

RESUMO

The cerebellar rhombic lip and telencephalic cortical hem are dorsally located germinal zones which contribute substantially to neuronal diversity in the CNS, but the mechanisms that drive neurogenesis within these zones are ill defined. Using genetic fate mapping in wild-type and Lmx1a(-/-) mice, we demonstrate that Lmx1a is a critical regulator of cell-fate decisions within both these germinal zones. In the developing cerebellum, Lmx1a is expressed in the roof plate, where it is required to segregate the roof plate lineage from neuronal rhombic lip derivatives. In addition, Lmx1a is expressed in a subset of rhombic lip progenitors which produce granule cells that are predominantly restricted to the cerebellar posterior vermis. In the absence of Lmx1a, these cells precociously exit the rhombic lip and overmigrate into the anterior vermis. This overmigration is associated with premature regression of the rhombic lip and posterior vermis hypoplasia in Lmx1a(-/-) mice. These data reveal molecular organization of the cerebellar rhombic lip and introduce Lmx1a as an important regulator of rhombic lip cell-fate decisions, which are critical for maintenance of the entire rhombic lip and normal cerebellar morphogenesis. In the developing telencephalon Lmx1a is expressed in the cortical hem, and in its absence cortical hem progenitors contribute excessively to the adjacent hippocampus instead of producing Cajal-Retzius neurons. Thus, Lmx1a activity is critical for proper production of cells originating from both the cerebellar rhombic lip and the telencephalic cortical hem.


Assuntos
Linhagem da Célula , Cerebelo/citologia , Cerebelo/metabolismo , Proteínas de Homeodomínio/metabolismo , Telencéfalo/citologia , Telencéfalo/metabolismo , Animais , Cerebelo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM , Camundongos , Camundongos Knockout , Fatores de Transcrição
12.
Neurosci Lett ; 806: 137244, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37055006

RESUMO

Two transcription factors, Atoh1 and Ptf1a, are essential for cochlear nuclei development. Atoh1 is needed to develop glutamatergic neurons, while Ptf1a is required to generate glycinergic and GABAergic neurons that migrate into the cochlear nucleus. While central projections of inner ear afferents are normal following loss of Atoh1, we wanted to know whether the loss of Ptf1a affects central projections. We found that in Ptf1a mutants, initially, afferents show a normal projection; however, a transient posterior expansion of projections to the dorsal cochlear nucleus occurs at a later stage. In addition, in older (E18.5) Ptf1a mutant mice, excessive neuronal branches form beyond the normal projection to the anterior and posterior ventral cochlear nuclei. Our results on Ptf1a null mice are comparable to that observed in loss of function Prickel1, Npr2, or Fzd3 mouse mutants. The disorganized tonotopic projections that we report in Ptf1a mutant embryos might be functionally relevant, but testing this hypothesis requires Ptf1a KO mice at postnatal stages that unfortunately cannot be performed due to their early death.


Assuntos
Núcleo Coclear , Orelha Interna , Animais , Camundongos , Núcleo Coclear/metabolismo , Orelha Interna/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Fatores de Transcrição/metabolismo
13.
Elife ; 122023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725078

RESUMO

Development of the nervous system depends on signaling centers - specialized cellular populations that produce secreted molecules to regulate neurogenesis in the neighboring neuroepithelium. In some cases, signaling center cells also differentiate to produce key types of neurons. The formation of a signaling center involves its induction, the maintenance of expression of its secreted molecules, and cell differentiation and migration events. How these distinct processes are coordinated during signaling center development remains unknown. By performing studies in mice, we show that Lmx1a acts as a master regulator to orchestrate the formation and function of the cortical hem (CH), a critical signaling center that controls hippocampus development. Lmx1a co-regulates CH induction, its Wnt signaling, and the differentiation and migration of CH-derived Cajal-Retzius neurons. Combining RNAseq, genetic, and rescue experiments, we identified major downstream genes that mediate distinct Lmx1a-dependent processes. Our work revealed that signaling centers in the mammalian brain employ master regulatory genes and established a framework for analyzing signaling center development.


Assuntos
Neurogênese , Neurônios , Animais , Camundongos , Transporte Biológico , Diferenciação Celular , Mamíferos , Neurogênese/genética , Via de Sinalização Wnt
14.
Front Cell Dev Biol ; 10: 1068288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523506

RESUMO

Preterm birth and its complications and the associated adverse factors, including brain hemorrhage, inflammation, and the side effects of medical treatments, are the leading causes of neurodevelopmental disability. Growing evidence suggests that preterm birth affects the cerebellum, which is the brain region involved in motor coordination, cognition, learning, memory, and social communication. The cerebellum is particularly vulnerable to the adverse effects of preterm birth because key cerebellar developmental processes, including the proliferation of neural progenitors, and differentiation and migration of neurons, occur in the third trimester of a human pregnancy. This review discusses the negative impacts of preterm birth and its associated factors on cerebellar development, focusing on the cellular and molecular mechanisms that mediate cerebellar pathology. A better understanding of the cerebellar developmental mechanisms affected by preterm birth is necessary for developing novel treatment and neuroprotective strategies to ameliorate the cognitive, behavioral, and motor deficits experienced by preterm subjects.

15.
J Comp Neurol ; 530(10): 1658-1699, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134251

RESUMO

Diverse neurons in the parabrachial nucleus (PB) communicate with widespread brain regions. Despite evidence linking them to a variety of homeostatic functions, it remains difficult to determine which PB neurons influence which functions because their subpopulations intermingle extensively. An improved framework for identifying these intermingled subpopulations would help advance our understanding of neural circuit functions linked to this region. Here, we present the foundation of a developmental-genetic ontology that classifies PB neurons based on their intrinsic, molecular features. By combining transcription factor labeling with Cre fate-mapping, we find that the PB is a blend of two, developmentally distinct macropopulations of glutamatergic neurons. Neurons in the first macropopulation express Lmx1b (and, to a lesser extent, Lmx1a) and are mutually exclusive with those in a second macropopulation, which derive from precursors expressing Atoh1. This second, Atoh1-derived macropopulation includes many Foxp2-expressing neurons, but Foxp2 also identifies a subset of Lmx1b-expressing neurons in the Kölliker-Fuse nucleus (KF) and a population of GABAergic neurons ventrolateral to the PB ("caudal KF"). Immediately ventral to the PB, Phox2b-expressing glutamatergic neurons (some coexpressing Lmx1b) occupy the KF, supratrigeminal nucleus, and reticular formation. We show that this molecular framework organizes subsidiary patterns of adult gene expression (including Satb2, Calca, Grp, and Pdyn) and predicts output projections to the amygdala (Lmx1b), hypothalamus (Atoh1), and hindbrain (Phox2b/Lmx1b). Using this molecular ontology to organize, interpret, and communicate PB-related information could accelerate the translation of experimental findings from animal models to human patients.


Assuntos
Núcleo de Kölliker-Fuse , Núcleos Parabraquiais , Animais , Encéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Humanos , Hipotálamo/metabolismo , Ponte/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Exp Neurol ; 336: 113537, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259808

RESUMO

Intrauterine growth restriction (IUGR) affects ~10% of human pregnancies, results in infants born small for gestational age (SGA), and is associated with motor and cognitive deficits. Human studies suggest that some deficits in SGA patients originate in the cerebellum, a major motor-coordination and cognitive center, but the underlying mechanisms remain unknown. To identify the cerebellar developmental program affected by IUGR, we analyzed the pig as a translational animal model in which some fetuses spontaneously develop IUGR due to early-onset chronic placental insufficiency. Similar to humans, SGA pigs revealed small cerebella, which contained fewer mature granule cells (GCs) in the internal granule cell layer (IGL). Surprisingly, newborn SGA pigs had increased proliferation of GC precursors in the external granule cell layer (EGL), which was associated with an increased density of Purkinje cells, known to non-autonomously promote the proliferation of GCs. However, the GCs of SGA pigs did not properly initiate exit from the EGL to IGL, which was associated with a decreased density of guiding Bergmann glial fibers, reduced expression of pro-migratory genes Pard3a, JamC and Sema6a, and increased apoptosis. While proliferation spontaneously normalized during postnatal development, accumulation of pre-migratory GCs and apoptosis in the EGL were long-lasting consequences of IUGR. Using organotypic cerebellar slice cultures, we showed that normalizing expression of Pard3a and JamC, which operate in the same molecular pathway in GCs, was sufficient to rescue both migratory and, at a later time point, apoptotic defects of IUGR. Thus, a decreased exit of GCs from the EGL, due to disrupted Pard3a/JamC radial migration initiation pathway, is a major mechanism of IUGR-related cerebellar pathology.


Assuntos
Cerebelo/crescimento & desenvolvimento , Retardo do Crescimento Fetal/patologia , Transdução de Sinais/genética , Animais , Animais Recém-Nascidos , Apoptose , Contagem de Células , Diferenciação Celular , Movimento Celular , Proliferação de Células , Cerebelo/patologia , Grânulos Citoplasmáticos , Feminino , Gravidez , Células de Purkinje/patologia , Suínos
17.
Neuroscience ; 452: 247-264, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246067

RESUMO

The inner ear, projections, and brainstem nuclei are essential components of the auditory and vestibular systems. It is believed that the evolution of complex systems depends on duplicated sets of genes. The contribution of duplicated genes to auditory or vestibular system development, however, is poorly understood. We describe that Lmx1a and Lmx1b, which originate from the invertebrate Lmx1b-like gene, redundantly regulate development of multiple essential components of the mammalian auditory/vestibular systems. Combined, but not individual, loss of Lmx1a/b eliminated the auditory inner ear organ of Corti (OC) and disrupted the spiral ganglion, which was preceded by a diminished expression of their critical regulator Pax2. Innervation of the remaining inner ear vestibular organs revealed unusual sizes or shapes and was more affected compared to Lmx1a/b single-gene mutants. Individual loss of Lmx1a/b genes did not disrupt brainstem auditory nuclei or inner ear central projections. Combined loss of Lmx1a/b, however, eliminated excitatory neurons in cochlear/vestibular nuclei, and also the expression of a master regulator Atoh1 in their progenitors in the lower rhombic lip (RL). Finally, in Lmx1a/b double mutants, vestibular afferents aberrantly projected to the roof plate. This phenotype was associated with altered expression of Wnt3a, a secreted ligand of the Wnt pathway that regulates pathfinding of inner ear projections. Thus, Lmx1a/b are redundantly required for the development of the mammalian inner ear, inner ear central projections, and cochlear/vestibular nuclei.


Assuntos
Órgão Espiral , Fatores de Transcrição , Animais , Cóclea , Proteínas com Homeodomínio LIM/genética , Gânglio Espiral da Cóclea , Fatores de Transcrição/genética
18.
Fac Rev ; 10: 47, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131657

RESUMO

We review the molecular basis of three related basic helix-loop-helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells.

19.
Front Nutr ; 8: 687703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150831

RESUMO

The goal of enteral nutritional support for infants born preterm or small for gestational age (SGA) is to achieve normal growth and development. Yet, this is difficult to achieve because of intestinal immaturity. Our objective was to determine if birth weight, protein intake, and the growth promoters leucine (10 g/L) or calcium-ß-hydroxy-ß-methylbutryate (HMB; 1.1 g/L) would affect trajectories of intestinal growth and functions and weights of other organs. Preterm pigs were delivered at gestational day 105 (91% of term) and fed for 6 or 7 days isocaloric formulas that differed in protein content (50 g or 100 g protein/L), with and without the growth promoters leucine or HMB. For comparative purposes organ weights were measured within 12 h after delivery for six term pigs of low and six of average birth weights. The responses of intestinal growth and total intestinal brush border membrane carbohydrases to protein level and supplemental leucine were of greater magnitude for preterm pigs of lower birth weight. Forskolin stimulated chloride secretion in the proximal small intestine was lower for pigs fed the low protein milk replacers. Capacities of the entire small intestine to transport glucose (mmol/kg-day) were not responsive to protein level, leucine, or HMB, and did not differ between small and large pigs. Relative organ weights of the small and average weight term pigs were similar, but some differed from those of the preterm pigs suggesting preterm birth and the standards of care used for this study altered the trajectories of development for the intestine and other organs. Although leucine is an effective generalized growth promoter that enhances gut development of small preterm pigs, it does not mitigate compromised neurodevelopment. Our findings using preterm pigs as a relevant preclinical model indicate nutrition support strategies can influence development of some gastrointestinal tract characteristics and the growth of other organs.

20.
J Neurosci ; 29(36): 11377-84, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19741143

RESUMO

The roof plate is an organizing center in the dorsal CNS that controls specification and differentiation of adjacent neurons through secretion of the BMP and WNT signaling molecules. Lmx1a, a member of the LIM-homeodomain (LIM-HD) transcription factor family, is expressed in the roof plate and its progenitors at all axial levels of the CNS and is necessary and sufficient for roof plate formation in the spinal cord. In the anterior CNS, however, a residual roof plate develops in the absence of Lmx1a. Lmx1b, another member of the LIM-HD transcription factor family which is highly related to Lmx1a, is expressed in the roof plate in the anterior CNS. Although Lmx1b-null mice do not show a substantial deficiency in hindbrain roof plate formation, Lmx1a/Lmx1b compound-null mutants fail to generate hindbrain roof plate. This observation indicates that both genes act in concert to direct normal hindbrain roof plate formation. Since the requirement of Lmx1b function for normal isthmic organizer at the mid-hindbrain boundary complicates analysis of a distinct dorsal patterning role of this gene, we also used a conditional knock-out strategy to specifically delete dorsal midline Lmx1b expression. Phenotypic analysis of single and compound conditional mutants confirmed overlapping roles for Lmx1 genes in regulating hindbrain roof plate formation and growth and also revealed roles in regulating adjacent cerebellar morphogenesis. Our data provides the first evidence of overlapping function of the Lmx1 genes during embryonic CNS development.


Assuntos
Cerebelo/embriologia , Cerebelo/fisiologia , Proteínas de Homeodomínio/fisiologia , Rombencéfalo/embriologia , Rombencéfalo/fisiologia , Fatores de Transcrição/fisiologia , Animais , Homologia de Genes/fisiologia , Proteínas de Homeodomínio/genética , Proteínas com Homeodomínio LIM , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA