Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Biol Chem ; 298(9): 102256, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35839855

RESUMO

Nuclear lamins maintain the nuclear envelope structure by forming long linear filaments via two alternating molecular arrangements of coiled-coil dimers, known as A11 and A22 binding modes. The A11 binding mode is characterized by the antiparallel interactions between coil 1b domains, whereas the A22 binding mode is facilitated by interactions between the coil 2 domains of lamin. The junction between A11- and A22-interacting dimers in the lamin tetramer produces another parallel head-tail interaction between coil 1a and the C-terminal region of coil 2, called the ACN interaction. During mitosis, phosphorylation in the lamin N-terminal head region by the cyclin-dependent kinase (CDK) complex triggers depolymerization of lamin filaments, but the associated mechanisms remain unknown at the molecular level. In this study, we revealed using the purified proteins that phosphorylation by the CDK1 complex promotes disassembly of lamin filaments by directly abolishing the ACN interaction between coil 1a and the C-terminal portion of coil 2. We further observed that this interaction was disrupted as a result of alteration of the ionic interactions between coil 1a and coil 2. Combined with molecular modeling, we propose a mechanism for CDK1-dependent disassembly of the lamin filaments. Our results will help to elucidate the cell cycle-dependent regulation of nuclear morphology at the molecular level.


Assuntos
Proteína Quinase CDC2 , Filamentos Intermediários , Lamina Tipo A , Proteína Quinase CDC2/química , Humanos , Filamentos Intermediários/química , Lamina Tipo A/química , Polimerização , Domínios Proteicos
2.
Biochem Biophys Res Commun ; 663: 41-46, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119764

RESUMO

Renal cell carcinoma (RCC), also known as kidney cancer, is a common malignant tumor of the urinary system. While surgical treatment is essential, novel therapeutic targets and corresponding drugs for RCC are still needed due to the high relapse rate and low five-year survival rate. In this study, we found that SUV420H2 is overexpressed in renal cancers and that high SUV420H2 expression is associated with a poor prognosis, as evidenced by RCC RNA-seq results derived from the TCGA. SUV420H2 knockdown using siRNA led to growth suppression and cell apoptosis in the A498 cell line. Furthermore, we identified DHRS2 as a direct target of SUV420H2 in the apoptosis process through a ChIP assay with a histone 4 lysine 20 (H4K20) trimethylation antibody. Rescue experiments showed that cotreatment with siSUV420H2 and siDHRS2 attenuated cell growth suppression induced by SUV420H2 knockdown only. Additionally, treatment with the SUV420H2 inhibitor A-196 induced cell apoptosis via upregulation of DHRS2. Taken together, our findings suggest that SUV420H2 may be a potential therapeutic target for the treatment of renal cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Epigênese Genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Recidiva Local de Neoplasia/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo
3.
J Med Virol ; 95(9): e29099, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37702580

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with high mortality in Eastern Asia. The disease is caused by the SFTS virus (SFTSV), also known as Dabie bandavirus, which has a segmented RNA genome consisting of L, M, and S segments. Previous studies have suggested differential viral virulence depending on the genotypes of SFTSV; however, the critical viral factor involved in the differential viral virulence is unknown. Here, we found a significant difference in viral replication in vitro and virulence in vivo between two Korean isolates belonging to the F and B genotypes, respectively. By generating viral reassortants using the two viral strains, we demonstrated that the L segment, which encodes viral RNA-dependent RNA polymerase (RdRp), is responsible for the enhanced viral replication and virulence. Comparison of amino acid sequences and viral replication rates revealed a point variation, E251K, on the surface of RdRp to be the most significant determinant for the enhanced viral replication rate and in vivo virulence. The effect of the variation was further confirmed using recombinant SFTSV generated by reverse genetic engineering. Therefore, our results indicate that natural variations affecting the viral replicase activity could significantly contribute to the viral virulence of SFTSV.


Assuntos
Febre Grave com Síndrome de Trombocitopenia , Humanos , Virulência , RNA Polimerases Dirigidas por DNA/genética , Replicação Viral , RNA Polimerase Dependente de RNA/genética
4.
J Transl Med ; 19(1): 250, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098982

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and idiopathic inflammatory disorder of the gastrointestinal tract and comprises ulcerative colitis (UC) and Crohn's disease (CD). Crohn's disease can affect any part of the gastrointestinal tract, but mainly the terminal ileum and colon. In the present study, we aimed to characterize terminal-ileal CD (ICD) and colonic CD (CCD) at the molecular level, which might enable a more optimized approach for the clinical care and scientific research of CD. METHODS: We analyzed differentially expressed genes in samples from 23 treatment-naïve paediatric patients with CD and 25 non-IBD controls, and compared the data with previously published RNA-Seq data using multi-statistical tests and confidence intervals. We implemented functional profiling and proposed statistical methods for feature selection using a logistic regression model to identify genes that are highly associated in ICD or CCD. We also validated our final candidate genes in independent paediatric and adult cohorts. RESULTS: We identified 550 genes specifically expressed in patients with CD compared with those in healthy controls (p < 0.05). Among these DEGs, 240 from patients with CCD were mainly involved in mitochondrial dysfunction, whereas 310 from patients with ICD were enriched in the ileum functions such as digestion, absorption, and metabolism. To choose the most effective gene set, we selected the most powerful genes (p-value ≤ 0.05, accuracy ≥ 0.8, and AUC ≥ 0.8) using logistic regression. Consequently, 33 genes were identified as useful for discriminating CD location; the accuracy and AUC were 0.86 and 0.83, respectively. We then validated the 33 genes with data from another independent paediatric cohort (accuracy = 0.93, AUC = 0.92) and adult cohort (accuracy = 0.88, AUC = 0.72). CONCLUSIONS: In summary, we identified DEGs that are specifically expressed in CCD and ICD compared with those in healthy controls and patients with UC. Based on the feature selection analysis, 33 genes were identified as useful for discriminating CCD and ICD with high accuracy and AUC, for not only paediatric patients but also independent cohorts. We propose that our approach and the final gene set are useful for the molecular classification of patients with CD, and it could be beneficial in treatments based on disease location.


Assuntos
Colite Ulcerativa , Doença de Crohn , Adulto , Criança , Doença de Crohn/genética , Humanos , Íleo , Modelos Logísticos , Transcriptoma/genética
5.
FASEB J ; 34(8): 9899-9910, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32602623

RESUMO

Lactobacilli, which are probiotic commensal bacteria that mainly reside in the human small intestine, have attracted attention for their ability to exert health-promoting effects and beneficially modulate host immunity. However, host epithelial-commensal bacterial interactions are still largely unexplored because of limited access to human small intestinal tissues. Recently, we described an in vitro maturation technique for generating adult-like, mature human intestinal organoids (hIOs) from human pluripotent stem cells (hPSCs) that closely resemble the in vivo tissue structure and cellular diversity. Here, we established an in vitro human model to study the response to colonization by commensal bacteria using luminal microinjection into mature hIOs, allowing for the direct examination of epithelial-bacterial interactions. Lactobacillus reuteri and Lactobacillus plantarum were more likely to survive and colonize when microinjected into the lumen of mature hIOs than when injected into immature hIOs, as determined by scanning electron microscopy, colony formation assay, immunofluorescence, and real-time imaging with L plantarum expressing red fluorescent protein. The improved mature hIO-based host epithelium system resulted from enhanced intestinal epithelial integrity via upregulation of mucus secretion and tight junction proteins. Our study indicates that mature hIOs are a physiologically relevant in vitro model system for studying commensal microorganisms.


Assuntos
Diferenciação Celular , Mucosa Intestinal/citologia , Intestinos/citologia , Lactobacillus/crescimento & desenvolvimento , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Células Cultivadas , Humanos , Técnicas In Vitro , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Organoides/microbiologia , Células-Tronco Pluripotentes/microbiologia
6.
Gastric Cancer ; 24(5): 1050-1062, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33834359

RESUMO

BACKGROUND: Aberrant activation of the WNT/ß-catenin and STAT3 signaling pathways plays a critical role in cancer progression. However, direct targeting of these pathways as an anti-cancer therapeutic approach needs to be reconsidered due to its serious side effects. Here, we demonstrate that overexpression of WNT induces STAT3 activation in a galectin-3-dependent manner. METHODS: We investigated how galectin-3 mediates the crosstalk between WNT/ß-catenin and STAT3 signaling and whether inhibition of galectin-3 can reduce gastric cancer. The molecular mechanisms were analyzed by biochemical assays using cultured gastric cancer cells, patient tissues, and genetically engineered mice. Moreover, we confirm of therapeutic effects of GB1107, a cell-penetrating galectin-3 specific inhibitor, using orthotopic gastric cancer-bearing mice RESULTS: Increased levels of galectin-3 and STAT3 phosphorylation were detected in the stomach tissues of WNT1-overexpressing mouse models. Also, high expression levels and co-localization of ß-catenin, pSTAT3, and galectin-3 in patients with advanced gastric cancer were correlated with a poorer prognosis. Galectin-3 depletion significantly decreased STAT3 Tyr705 phosphorylation, which regulates its nuclear localization and transcriptional activation. A peptide of galectin-3 (Y45-Q48) directly bound to the STAT3 SH2 domain and enhanced its phosphorylation. GB1107, a specific membrane-penetrating inhibitor of galectin-3, significantly reduced the activation of both STAT3 and ß-catenin and inhibited tumor growth in orthotopic gastric cancer-bearing mice. CONCLUSIONS: We propose that galectin-3 mediates the crosstalk between the WNT and STAT3 signaling pathways. Therefore GB1107, a galectin-3-specific inhibitor, maybe a potent agent with anti-gastric cancer activity. Further studies are needed for its clinical application in gastric cancer therapy.


Assuntos
Galectina 3 , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Galectina 3/genética , Galectina 3/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fator de Transcrição STAT3 , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
7.
Ann Clin Microbiol Antimicrob ; 20(1): 45, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134705

RESUMO

BACKGROUND: A complex cascade of genes, enzymes, and transcription factors regulates AmpC ß-lactamase overexpression. We investigated the network of AmpC ß-lactamase overexpression in Klebsiella aerogenes and identified the role of AmpG in resistance to ß-lactam agents, including cephalosporins and carbapenems. METHODS: A transposon mutant library was created for carbapenem-resistant K. aerogenes YMC2008-M09-943034 (KE-Y1) to screen for candidates with increased susceptibility to carbapenems, which identified the susceptible mutant derivatives KE-Y3 and KE-Y6. All the strains were subjected to highly contiguous de novo assemblies using PacBio sequencing to investigate the loss of resistance due to transposon insertion. Complementation and knock-out experiments using lambda Red-mediated homologous recombinase and CRISPR-Cas9 were performed to confirm the role of gene of interest. RESULTS: In-depth analysis of KE-Y3 and KE-Y6 revealed the insertion of a transposon at six positions in each strain, at which truncation of the AmpG permease gene was common in both. The disruption of the AmpG permease leads to carbapenem susceptibility, which was further confirmed by complementation. We generated an AmpG permease gene knockout using lambda Red-mediated recombineering in K. aerogenes KE-Y1 and a CRISPR-Cas9-mediated gene knockout in multidrug-resistant Klebsiella pneumoniae-YMC/2013/D to confer carbapenem susceptibility. CONCLUSIONS: These findings suggest that inhibition of the AmpG is a potential strategy to increase the efficacy of ß-lactam agents against Klebsiella aerogenes.


Assuntos
Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Cefalosporinas/farmacologia , Proteínas de Membrana Transportadoras/genética , Resistência beta-Lactâmica/genética , beta-Lactamas/farmacologia , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , República Democrática Popular da Coreia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Klebsiella pneumoniae/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Mutagênese , Alinhamento de Sequência , Resistência beta-Lactâmica/efeitos dos fármacos
8.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502049

RESUMO

Cancer targeting nanoparticles have been extensively studied, but stable and applicable agents have yet to be developed. Here, we report stable nanoparticles based on hepatitis B core antigen (HBcAg) for cancer therapy. HBcAg monomers assemble into spherical capsids of 180 or 240 subunits. HBcAg was engineered to present an affibody for binding to human epidermal growth factor receptor 1 (EGFR) and to present histidine and tyrosine tags for binding to gold ions. The HBcAg engineered to present affibody and tags (HAF) bound specifically to EGFR and exterminated the EGFR-overexpressing adenocarcinomas under alternating magnetic field (AMF) after binding with gold ions. Using cryogenic electron microscopy (cryo-EM), we obtained the molecular structures of recombinant HAF and found that the overall structure of HAF was the same as that of HBcAg, except with the affibody on the spike. Therefore, HAF is viable for cancer therapy with the advantage of maintaining a stable capsid form. If the affibody in HAF is replaced with a specific sequence to bind to another targetable disease protein, the nanoparticles can be used for drug development over a wide spectrum.


Assuntos
Adenocarcinoma/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/química , Nanopartículas/química , Microscopia Crioeletrônica , Receptores ErbB/metabolismo , Ouro/química , Células HT29 , Humanos , Nanopartículas/ultraestrutura , Ligação Proteica , Proteínas Recombinantes/química
9.
J Biol Chem ; 294(3): 794-804, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30455349

RESUMO

Non-cryogenic protein structures determined at ambient temperature may disclose significant information about protein activity. Chloride-pumping rhodopsin (ClR) exhibits a trend to hyperactivity induced by a change in the photoreaction rate because of a gradual decrease in temperature. Here, to track the structural changes that explain the differences in CIR activity resulting from these temperature changes, we used serial femtosecond crystallography (SFX) with an X-ray free electron laser (XFEL) to determine the non-cryogenic structure of ClR at a resolution of 1.85 Å, and compared this structure with a cryogenic ClR structure obtained with synchrotron X-ray crystallography. The XFEL-derived ClR structure revealed that the all-trans retinal (ATR) region and positions of two coordinated chloride ions slightly differed from those of the synchrotron-derived structure. Moreover, the XFEL structure enabled identification of one additional water molecule forming a hydrogen bond network with a chloride ion. Analysis of the channel cavity and a difference distance matrix plot (DDMP) clearly revealed additional structural differences. B-factor information obtained from the non-cryogenic structure supported a motility change on the residual main and side chains as well as of chloride and water molecules because of temperature effects. Our results indicate that non-cryogenic structures and time-resolved XFEL experiments could contribute to a better understanding of the chloride-pumping mechanism of ClR and other ion pumps.


Assuntos
Actinomycetales/química , Canais de Cloreto/química , Rodopsinas Microbianas/química , Cristalografia por Raios X , Domínios Proteicos
10.
Int J Cancer ; 146(8): 2194-2200, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31290142

RESUMO

Somatic mutations of epidermal growth factor receptor (EGFR) occur in ~3% of colorectal cancer (CRC) patients. Here, through systematic functional screening of 21 recurrent EGFR mutations selected from public data sets, we show that 11 colon cancer-derived EGFR mutants (G63R, E114K, R165Q, R222C, S492R, P596L, K708R, E709K, G719S, G724S and L858R) are oncogenic and able to transform cells in a ligand-independent manner. We demonstrate that cellular transformation by these mutants requires receptor dimerization. Importantly, the EGF-induced and constitutive oncogenic potential of these EGFR mutants are inhibited by cetuximab or panitumumab in vivo and in vitro. Taken together, we propose that a subset of EGFR mutations can serve as genomic predictors for response to anti-EGFR antibodies and that metastatic CRC patients with such mutations may benefit from these drugs as part of the first-line therapy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Cetuximab/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Panitumumabe/farmacologia , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Animais , Antineoplásicos Imunológicos/farmacologia , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Dimerização , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Mutação , Células NIH 3T3 , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biochem Biophys Res Commun ; 523(3): 726-732, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31948750

RESUMO

Betulinic acid (BA) exhibits various biological activities such as anti-bacterial, anti-inflammatory, anti-human papilloma virus (HPV), and anti-cancer activities. HPV infection is associated with a high risk of cervical cancer, which is the leading cause of deaths among women worldwide. Therefore, BA is an attractive therapeutic agent for treating cervical cancer. In this study, we investigated the role of BA in regulating the hypoxia-mediated response in HeLa cells and clarified the underlying mechanism of action. We found that BA inhibited the hypoxia-induced accumulation of HIF-1α without affecting HIF-1α mRNA levels and suppressed the expression of HIF target genes, including VEGF, GLUT1, and PDK1 in HeLa cells. Additionally, BA enhanced the ß1, ß2, and ß5 activities of the proteasome, which resulted in reduced levels of ubiquitinated proteins and HIF-1α protein in HeLa cells. However, BA treatment did not affect the deubiquitinase enzyme activity in HeLa cells. These results indicate that inhibition of HIF-1α accumulation by BA is mediated by activation of the proteasome, and BA is a potential anticancer agent for the regulation of the HIF signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Triterpenos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Triterpenos Pentacíclicos , Hipóxia Tumoral/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Ácido Betulínico
12.
Biochem Biophys Res Commun ; 524(3): 672-676, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32033749

RESUMO

For breast cancer treatment, hormone therapy is effective for hormone receptor-positive breast cancer but not for TNBC (triple-negative breast cancer). Thus, many researchers have attempted to identify more effective therapeutic candidates for all subtypes of breast cancer. In this study, we established an RNA-seq analytical pipeline to analyze the subtype-specific functions of EHMT2 in the MB231 and MCF7 cell lines. After EHMT2 knockdown, we identified subtype-specific DEGs (differentially expressed genes) and overlapping DEGs. Through GO (Gene Ontology) analysis, GSEA (gene set enrichment analysis), and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis using the DEGs, we identified the subtype-specific functions of EHMT2 in the MB231 and MCF7 cell lines. Therefore, herein, we suggest that EHMT2 is an attractive therapeutic target for the treatment of all types of breast cancer.


Assuntos
Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , RNA-Seq , Neoplasias de Mama Triplo Negativas/genética , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Reparo do DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Invasividade Neoplásica
13.
Plant Physiol ; 179(2): 558-568, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30545904

RESUMO

Root hairs are important for absorption of nutrients and water from the rhizosphere. The Root Hair Defective-Six Like (RSL) Class II family of transcription factors is expressed preferentially in root hairs and has a conserved role in root hair development in land plants. We functionally characterized the seven members of the RSL Class II subfamily in the rice (Oryza sativa) genome. In root hairs, six of these genes were preferentially expressed and four were strongly expressed. Phenotypic analysis of each mutant revealed that Os07g39940 plays a major role in root hair formation, based on observations of a short root hair phenotype in those mutants. Overexpression (OX) for each of four family members in rice resulted in an increase in the density and length of root hairs. These four members contain a transcription activation domain and are targeted to the nucleus. They interact with rice Root Hairless1 (OsRHL1), a key regulator of root hair development. When heterologously expressed in epidermal cells of Nicotiana benthamiana leaves, OsRHL1 was predominantly localized to the cytoplasm. When coexpressed with each of the four RSL Class II members, however, OsRLH1 was translocated to the nucleus. Transcriptome analysis using Os07g39940-OX plants revealed that 86 genes, including Class III peroxidases, were highly up-regulated. Furthermore, reactive oxygen species levels in the root hairs were increased in Os07g39940-OX plants but were drastically reduced in the os07g39940 and rhl1 mutants. Our results demonstrate that RSL Class II members function as essential regulators of root hair development in rice.


Assuntos
Núcleo Celular/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Epiderme Vegetal/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo
14.
J Exp Bot ; 71(9): 2596-2611, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32275312

RESUMO

Yeast Rpf2 plays a critical role in the incorporation of 5S rRNA into pre-ribosomes by forming a binary complex with Rrs1. The protein characteristics and overexpression phenotypes of Arabidopsis Ribosome Production Factor 2 (ARPF2) and Arabidopsis Regulator of Ribosome Synthesis 1 (ARRS1) have been previously studied. Here, we analyze loss-of-function phenotypes of ARPF2 and ARRS1 using virus-induced gene silencing to determine their functions in pre-rRNA processing and ribosome biogenesis. ARPF2 silencing in Arabidopsis led to pleiotropic developmental defects. RNA gel blot analysis and circular reverse transcription-PCR revealed that ARPF2 depletion delayed pre-rRNA processing, resulting in the accumulation of multiple processing intermediates. ARPF2 fractionated primarily with the 60S ribosomal subunit. Metabolic rRNA labeling and ribosome profiling suggested that ARPF2 deficiency mainly affected 25S rRNA synthesis and 60S ribosome biogenesis. ARPF2 and ARRS1 formed the complex that interacted with the 60S ribosomal proteins RPL5 and RPL11. ARRS1 silencing resulted in growth defects, accumulation of processing intermediates, and ribosome profiling similar to those of ARPF2-silenced plants. Moreover, depletion of ARPF2 and ARRS1 caused nucleolar stress. ARPF2-deficient plants excessively accumulated anthocyanin and reactive oxygen species. Collectively, these results suggest that the ARPF2-ARRS1 complex plays a crucial role in plant growth and development by modulating ribosome biogenesis.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 5S/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
15.
Biotechnol Bioeng ; 117(6): 1864-1876, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162676

RESUMO

Although primary human hepatocytes (PHHs) are the gold standard in drug efficacy and metabolism studies, long-term survival of PHHs and maintenance of their hepatic function are still challenging. In this study, we focused on the effect of the initial microenvironment on upregulation and long-term preservation of hepatic function of PHHs encapsulated within biodegradable hydrogel systems. PHHs were encapsulated in RGD-functionalized hybrid hydrogels with various degrees of degradability, and their hepatic functionality was analyzed. Regardless of the hydrogel elastic modulus, the combination with nondegradable hydrogels had a predominantly negative effect on the prompt engraftment of PHHs, whereas a degradable hydrogel with intermediate initial degradability was most effective in maintaining hepatic function. Efficient network formation by PHHs and cocultured cells, along with the control of hydrogel degradation, governed the hepatic functionality at an early stage and upon long-term cultivation. Under optimized conditions, expression of genes involved in biological processes such as focal adhesions, cell survival, cytoskeleton formation, and extracellular matrix interactions was significantly higher than that in a control with relatively delayed initial degradation. Thus, we suggest that the orchestrated control of initial cellular remodeling may play an important role in the maintenance of hepatic function in a three-dimensional PHH culture.


Assuntos
Materiais Biocompatíveis/química , Células Imobilizadas/citologia , Hepatócitos/citologia , Hidrogéis/química , Técnicas de Cultura de Células/métodos , Linhagem Celular , Células Cultivadas , Células Imobilizadas/metabolismo , Módulo de Elasticidade , Expressão Gênica , Hepatócitos/metabolismo , Humanos , Alicerces Teciduais/química
16.
Genomics ; 111(2): 159-166, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29366860

RESUMO

Non-coding RNA is no longer considered to be "junk" DNA, based on evidence uncovered in recent decades. In particular, the important role played by natural antisense transcripts (NATs) in regulating the expression of genes is receiving increasing attention. However, the regulatory mechanisms of NATs remain incompletely understood. It is well-known that the insertion of transposable elements (TEs) can affect gene transcription. Using a bioinformatics approach, we identified NATs using human mRNA sequences from the UCSC Genome Browser Database. Our in silico analysis identified 1079 NATs and 700 sense-antisense gene pairs. We identified 179 NATs that showed evidence of having been affected by TEs during cellular gene expression. These findings may provide an understanding of the complex regulation mechanisms of NATs. If our understanding of NATs as modulators of gene expression is further enhanced, we can develop ways to control gene expression.


Assuntos
Elementos de DNA Transponíveis/genética , RNA Antissenso/genética , RNA Mensageiro/genética , Biologia Computacional , Humanos , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo
17.
J Hepatol ; 71(5): 970-985, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31299272

RESUMO

BACKGROUND & AIMS: The development of hepatic models capable of long-term expansion with competent liver functionality is technically challenging in a personalized setting. Stem cell-based organoid technologies can provide an alternative source of patient-derived primary hepatocytes. However, self-renewing and functionally competent human pluripotent stem cell (PSC)-derived hepatic organoids have not been developed. METHODS: We developed a novel method to efficiently and reproducibly generate functionally mature human hepatic organoids derived from PSCs, including human embryonic stem cells and induced PSCs. The maturity of the organoids was validated by a detailed transcriptome analysis and functional performance assays. The organoids were applied to screening platforms for the prediction of toxicity and the evaluation of drugs that target hepatic steatosis through real-time monitoring of cellular bioenergetics and high-content analyses. RESULTS: Our organoids were morphologically indistinguishable from adult liver tissue-derived epithelial organoids and exhibited self-renewal. With further maturation, their molecular features approximated those of liver tissue, although these features were lacking in 2D differentiated hepatocytes. Our organoids preserved mature liver properties, including serum protein production, drug metabolism and detoxifying functions, active mitochondrial bioenergetics, and regenerative and inflammatory responses. The organoids exhibited significant toxic responses to clinically relevant concentrations of drugs that had been withdrawn from the market due to hepatotoxicity and recapitulated human disease phenotypes such as hepatic steatosis. CONCLUSIONS: Our organoids exhibit self-renewal (expandable and further able to differentiate) while maintaining their mature hepatic characteristics over long-term culture. These organoids may provide a versatile and valuable platform for physiologically and pathologically relevant hepatic models in the context of personalized medicine. LAY SUMMARY: A functionally mature, human cell-based liver model exhibiting human responses in toxicity prediction and drug evaluation is urgently needed for pre-clinical drug development. Here, we develop a novel human pluripotent stem cell-derived hepatocyte-like liver organoid that is critically advanced in terms of its generation method, functional performance, and application technologies. Our organoids can contribute to the better understanding of liver development and regeneration, and provide insights for metabolic studies and disease modeling, as well as toxicity assessments and drug screening for personalized medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Organoides/citologia , Acetaminofen/farmacologia , Diferenciação Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/induzido quimicamente , Fígado/metabolismo , Organoides/efeitos dos fármacos , Organoides/metabolismo , Regeneração/efeitos dos fármacos , Transcriptoma
18.
FASEB J ; 32(1): 111-122, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855280

RESUMO

Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5mCherry) and intestine-specific homeobox enhanced green fluorescence protein (ISXeGFP). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Intestinos/citologia , Organoides/citologia , Animais , Técnicas Biossensoriais , Diferenciação Celular/genética , Linhagem Celular , Sistemas Computacionais , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Xenoenxertos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Organoides/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Vermelha Fluorescente
19.
Biotechnol Bioeng ; 116(6): 1496-1508, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30737956

RESUMO

Spheroids, a widely used three-dimensional (3D) culture model, are standard in hepatocyte culture as they preserve long-term hepatocyte functionality and enhance survivability. In this study, we investigated the effects of three operation modes in 3D culture - static, orbital shaking, and under vertical bidirectional flow using spheroid forming units (SFUs) on hepatic differentiation and drug metabolism to propose the best for mass production of functionally enhanced spheroids. Spheroids in SFUs exhibited increased hepatic gene expression, albumin secretion, and cytochrome P450 3A4 (CYP3A4) activity during the differentiation period (12 days). SFUs advantages include facilitated mass production and a relatively earlier peak of CYP3A4 activity. However, CYP3A4 activity was not well maintained under dimethyl sulfoxide (DMSO)-free conditions (13-18 days), dramatically reducing drug metabolism capability. Continued shear stimulation without differentiation stimuli in assay conditions markedly attenuated CYP3A4 activity, which was less severe in static conditions. In this condition, SFU spheroids exhibited dedifferentiation characteristics, such as increased proliferation and Notch signaling genes. We found that the dedifferentiation could be overcome by using the serum-free medium formulation. Therefore, we suggest that SFUs represent the best option for the mass production of functionally improved spheroids and so the serum-free conditions should be maintained during drug metabolism analysis.


Assuntos
Técnicas de Cultura de Células/instrumentação , Hepatócitos/metabolismo , Preparações Farmacêuticas/metabolismo , Esferoides Celulares/metabolismo , Albuminas/metabolismo , Linhagem Celular , Citocromo P-450 CYP3A/metabolismo , Desenho de Equipamento , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Esferoides Celulares/efeitos dos fármacos
20.
J Nanobiotechnology ; 17(1): 24, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30722792

RESUMO

BACKGROUND: Silica nanoparticles (SiNPs) are widely used for biosensing and diagnostics, and for the targeted delivery of therapeutic agents. Safety concerns about the biomedical and clinical applications of SiNPs have been raised, necessitating analysis of the effects of their intrinsic properties, such as sizes, shapes, and surface physicochemical characteristics, on human health to minimize risk in biomedical applications. In particular, SiNP size-associated toxicological effects, and the underlying molecular mechanisms in the vascular endothelium remain unclear. This study aimed to elucidate the detailed mechanisms underlying the cellular response to exposure to trace amounts of SiNPs and to determine applicable size criteria for biomedical application. METHODS: To clarify whether these SiNP-mediated cytotoxicity due to induction of apoptosis or necrosis, human ECs were treated with SiNPs of four different non-overlapping sizes under low serum-containing condition, stained with annexin V and propidium iodide (PI), and subjected to flow cytometric analysis (FACS). Two types of cell death mechanisms were assessed in terms of production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress induction, and autophagy activity. RESULTS: Spherical SiNPs had a diameter of 21.8 nm; this was further increased to 31.4, 42.9, and 56.7 nm. Hence, we investigated these effects in human endothelial cells (ECs) treated with these nanoparticles under overlap- or agglomerate-free conditions. The 20-nm SiNPs, but not SiNPs of other sizes, significantly induced apoptosis and necrosis. Surprisingly, the two types of cell death occurred independently and through different mechanisms. Apoptotic cell death resulted from ROS-mediated ER stress. Furthermore, autophagy-mediated necrotic cell death was induced through the PI3K/AKT/eNOS signaling axis. Together, the present results indicate that SiNPs within a diameter of < 20-nm pose greater risks to cells in terms of cytotoxic effects. CONCLUSION: These data provide novel insights into the size-dependence of the cytotoxic effects of silica nanoparticles and the underlying molecular mechanisms. The findings are expected to inform the applicable size range of SiNPs to ensure their safety in biomedical and clinical applications.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nanopartículas/toxicidade , Necrose/patologia , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício , Autofagia/efeitos dos fármacos , Células Cultivadas , Meios de Cultura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Nanopartículas/química , Necrose/metabolismo , Tamanho da Partícula , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA