Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Br J Cancer ; 129(2): 374-381, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37280413

RESUMO

BACKGROUND: Postoperative minimal residual disease (MRD) detection using circulating-tumour DNA (ctDNA) requires a highly sensitive analysis platform. We have developed a tumour-informed, hybrid-capture ctDNA sequencing MRD assay. METHODS: Personalised target-capture panels for ctDNA detection were designed using individual variants identified in tumour whole-exome sequencing of each patient. MRD status was determined using ultra-high-depth sequencing data of plasma cell-free DNA. The MRD positivity and its association with clinical outcome were analysed in Stage II or III colorectal cancer (CRC). RESULTS: In 98 CRC patients, personalised panels for ctDNA sequencing were built from tumour data, including a median of 185 variants per patient. In silico simulation showed that increasing the number of target variants increases MRD detection sensitivity in low fractions (<0.01%). At postoperative 3-week, 21.4% of patients were positive for MRD by ctDNA. Postoperative positive MRD was strongly associated with poor disease-free survival (DFS) (adjusted hazard ratio 8.40, 95% confidence interval 3.49-20.2). Patients with a negative conversion of MRD after adjuvant therapy showed significantly better DFS (P < 0.001). CONCLUSION: Tumour-informed, hybrid-capture-based ctDNA assay monitoring a large number of patient-specific mutations is a sensitive strategy for MRD detection to predict recurrence in CRC.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , Humanos , DNA Tumoral Circulante/genética , Neoplasia Residual/genética , Intervalo Livre de Doença , Mutação , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
2.
J Gen Physiol ; 154(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099502

RESUMO

Despite distinctive functional and anatomic differences, a precise understanding of the cardiac interventricular differences in excitation-contraction (E-C) coupling mechanisms is still lacking. Here, we directly compared rat right and left cardiomyocytes (RVCM and LVCM). Whole-cell patch clamp, the IonOptix system, and fura-2 fluorimetry were used to measure electrical properties (action potential and ionic currents), single-cell contractility, and cytosolic Ca2+ ([Ca2+]i), respectively. Myofilament proteins were analyzed by immunoblotting. RVCM showed significantly shorter action potential duration (APD) and higher density of transient outward K+ current (Ito). However, the triggered [Ca2+]i change (Ca2+ transient) was not different, while the decay rate of the Ca2+ transient was slower in RVCM. Although the relaxation speed was also slower, the sarcomere shortening amplitude (ΔSL) was smaller in RVCM. SERCA activity was ∼60% lower in RVCM, which is partly responsible for the slower decay of the Ca2+ transient. Immunoblot analysis revealed lower expression of the cardiac troponin complex (cTn) in RVCM, implying a smaller Ca2+ buffering capacity (κS), which was proved by in situ analysis. The introduction of these new levels of cTn, Ito, and SERCA into a mathematical model of rat LVCM reproduced the similar Ca2+ transient, slower Ca2+ decay, shorter APD, and smaller ΔSL of RVCM. Taken together, these data show reduced expression of cTn proteins in the RVCM, which provides an explanation for the interventricular difference in the E-C coupling kinetics.


Assuntos
Ventrículos do Coração , Contração Miocárdica , Potenciais de Ação , Animais , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Ratos , Troponina/metabolismo
3.
Sci Rep ; 11(1): 19596, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599262

RESUMO

Recurrent gene mutations and fusions in cancer patients are likely to be associated with cancer progression or recurrence by Vogelstein et al. (Science (80-) 340, 1546-1558 (2013)). In this study, we investigated gene mutations and fusions that recurrently occurred in early-stage cancer patients with stage I non-small-cell cancer (NSCLC). Targeted exome sequencing was performed to profile the variants and confirmed their fidelity at the gene and pathway levels through comparison with data for stage I lung cancer patients, which was obtained from The Cancer Genome Atlas (TCGA). Next, we identified prognostic gene mutations (ATR, ERBB3, KDR, and MUC6), fusions (GOPC-ROS1 and NTRK1-SH2D2A), and VEGF signaling pathway associated with cancer recurrence. To infer the functional implication of the recurrent variants in early-stage cancers, the extent of their selection pattern was investigated, and they were shown to be under positive selection, implying a selective advantage for cancer progression. Specifically, high selection scores were observed in the variants with significantly high risks for recurrence. Taken together, the results of this study enabled us to identify recurrent gene mutations and fusions in a stage I NSCLC cohort and to demonstrate positive selection, which had implications regarding cancer recurrence.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Fusão Gênica , Neoplasias Pulmonares/genética , Mutação , Carcinoma Pulmonar de Células não Pequenas/patologia , Intervalo Livre de Doença , Humanos , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/genética , Prognóstico , Seleção Genética , Transdução de Sinais/genética
4.
Anim Cells Syst (Seoul) ; 25(3): 128-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262655

RESUMO

Fetal growth restriction (FGR) is the failure of the fetus toachieve its genetically determined growth potential, which increasesrisks for a variety of genetic diseases, such as type 2 diabetes mellitus, coronary artery disease, and stroke, during the lifetime. The dysregulation of DNA methylationis known to interact with environmental fluctuations, affect gene expressions comprehensively, and be fatal to fetus development in specific cases. Therefore, we set out to find out epigenetic and transcriptomic alterations associated with FGR development. We found a set of differentially expressed genes associated with differentially methylated regions in placentae and cord blood samples. Using dimensional reduction analysis, the expression and methylation variables of the epigenetically altered genes classified the FGR samples from the controls. These genes were also enriched in the biological pathways such as metabolism and developmental processes related to FGR. Furthermore, three genes of INS, MEG3, and ZFP36L2 are implicated in epigenetic imprinting, which has been associated with FGR. These results strongly suggest that DNA methylation is highly dysregulated during FGR development, and abnormal DNA methylation patterns are likely to alter gene expression.

5.
Cancer Genet ; 258-259: 27-36, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34315006

RESUMO

Recurrent gene mutations and copy number alterations in cancer patients are presumably associated with resistance to targeted therapy. In the present study, we assessed the gene mutations and copy number alterations that recurrently occurred in cetuximab-treated patients with metastatic colorectal cancer (mCRC). Targeted next-generation sequencing was performed in the tumor samples obtained pre- and postcetuximab treatment to assess the variations that occurred during cetuximab treatment. Moreover, we identified the emergent gene mutations (CDK6, EPHA3, ERCC2, MYC, PCMTD1, PIK3CA, PRIM2, RICTOR, and ZNRF3) and copy number alterations (ARAF, BCL2, BRCA2, EGFR, MYC, and SMAD4) that were recurrently observed only in postprogression samples and not in pretreatment or posttreatment samples from patients revealing clinical response. Furthermore, to identify the feasible candidate variations implicated in treatment resistance, we examined the variants with clonal expansion during treatment and discovered PCBP1 as a variant associated with posttreatment progression. Various recurrent mutations were enriched in the TGF-beta signaling pathway. Collectively, we identified recurrent variations in mCRC samples exhibiting post-cetuximab progression. Additionally, future studies are required to evaluate the therapeutic potential of these variations.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Idoso , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Prognóstico , Taxa de Sobrevida
6.
Endocrinol Metab (Seoul) ; 31(1): 31-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26996420

RESUMO

Skeletal muscle possesses plasticity and adaptability to external and internal physiological changes. Due to these characteristics, skeletal muscle shows dramatic changes depending on its response to stimuli such as physical activity, nutritional changes, disease status, and environmental changes. Modulation of the rate of protein synthesis/degradation plays an important role in atrophic responses. The purpose of this review is to describe different features of skeletal muscle adaptation with various models of deceased use. In this review, four models were addressed: immobilization, spinal cord transection, hindlimb unloading, and aging. Immobilization is a form of decreased use in which skeletal muscle shows electrical activity, tension development, and motion. These results differ by muscle group. Spinal cord transection was selected to simulate spinal cord injury. Similar to the immobilization model, dramatic atrophy occurs in addition to fiber type conversion in this model. Despite the fact that electromyography shows unremarkable changes in muscle after hindlimb unloading, decreased muscle mass and contractile force are observed. Lastly, aging significantly decreases the numbers of muscle fibers and motor units. Skeletal muscle responses to decreased use include decreased strength, decreased fiber numbers, and fiber type transformation. These four models demonstrated different changes in the skeletal muscle. This review elucidates the different skeletal muscle adaptations in these four decreased use animal models and encourages further studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA