Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11625, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468553

RESUMO

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are autoimmune inflammatory disorders of the central nervous system (CNS) with similar characteristics. The differential diagnosis between MS and NMOSD is critical for initiating early effective therapy. In this study, we developed a deep learning model to differentiate between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) using brain magnetic resonance imaging (MRI) data. The model was based on a modified ResNet18 convolution neural network trained with 5-channel images created by selecting five 2D slices of 3D FLAIR images. The accuracy of the model was 76.1%, with a sensitivity of 77.3% and a specificity of 74.8%. Positive and negative predictive values were 76.9% and 78.6%, respectively, with an area under the curve of 0.85. Application of Grad-CAM to the model revealed that white matter lesions were the major classifier. This compact model may aid in the differential diagnosis of MS and NMOSD in clinical practice.


Assuntos
Aprendizado Profundo , Esclerose Múltipla , Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Aquaporina 4
2.
Sci Rep ; 12(1): 1579, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091634

RESUMO

Although fatigue is a major symptom in patients with neuromyelitis optica spectrum disorder (NMOSD), the underlying mechanism remains unclear. We explored the relationship between subcortical structures and fatigue severity to identify neural substrates of fatigue in NMOSD. Clinical characteristics with brain magnetic resonance imaging were evaluated in forty patients with NMOSD. Fatigue was assessed using the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-fatigue) questionnaire (a higher score indicates less fatigue). We assessed the correlation between subcortical structures and fatigue severity using surface-based shape analysis. Most of the enrolled patients showed fatigue (72.5%; mean FACIT-fatigue score, 34.8 ± 10.8). The FACIT-fatigue score was negatively correlated with Expanded Disability Status Scale and Beck Depression Inventory scores (r = - 0.382, p = 0.016; r = - 0.578, p < 0.001). We observed that the right thalamus was the only extracted region for various threshold experiments. Further, patients with lower FACIT-fatigue scores (more fatigue) had decreased local shape volume in the right thalamus. Fatigue is common in patients with NMOSD, and atrophy in the right thalamus is strongly correlated with fatigue severity. The local shape volume of the right thalamus might serve as a biomarker of fatigue in NMOSD.


Assuntos
Neuromielite Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA