Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Langmuir ; 39(19): 6657-6665, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126661

RESUMO

Micro- and nanotexturing on hard biomaterials have shown advantages for tissue engineering and antifouling applications. However, a growing number of studies have also shown that texturing may cause an increase in friction, demanding further research on the tribological effects of texturing under physiological conditions. This study investigates the tribological effects of micro- and nanopore patterns on hard hydrophilic silicon sliding against soft hydrophobic polydimethylsiloxane (PDMS) immersed in aqueous liquids with various viscosities, simulating the sliding of a textured implant surface against soft tissues. The experimental results show that silicon surfaces with pore textures at both micro- and nanoscale feature sizes confer a higher coefficient of friction (COF) than an untextured one. It is attributed to the texture's edge effect caused by the periodic pore patterns between the two sliding objects with a large difference in material stiffness. For the same solid area fraction, nanopored surfaces show a higher COF than micropored surfaces because of the significantly higher texture edge length per unit area. For micropored surfaces with a similar length of texture edge length per unit area, the COF increases more significantly with the increase in pore size because of the greater stress at the rims of the larger pores. The COFs of both micro- and nanoscale pores generally decrease from ∼10 to 0.1 with an increase in the surrounding aqueous viscosity, indicating the transition from a boundary lubrication to a mixed lubrication regime while mostly remaining in boundary lubrication. In contrast, the COF of an untextured surface decreases from ∼1 to 0.01, indicating that it mostly remains in the mixed lubrication regime while showing the tendency toward hydrodynamic lubrication. Compared to a hydrophilic hard probe sliding against a textured hydrophobic soft substrate, the hydrophobic soft probe sliding against a textured hydrophilic hard substrate produces a significantly higher COF under similar physiological conditions due to the larger edge effect.

2.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834250

RESUMO

We investigated whether the response to anti-tumor necrosis factor (anti-TNF) treatment varied according to inflammatory tissue characteristics in Crohn's disease (CD). Bulk RNA sequencing (RNA-seq) data were obtained from inflamed and non-inflamed tissues from 170 patients with CD. The samples were clustered based on gene expression profiles using principal coordinate analysis (PCA). Cellular heterogeneity was inferred using CiberSortx, with bulk RNA-seq data. The PCA results displayed two clusters of CD-inflamed samples: one close to (Inflamed_1) and the other far away (Inflamed_2) from the non-inflamed samples. Inflamed_1 was rich in anti-TNF durable responders (DRs), and Inflamed_2 was enriched in non-durable responders (NDRs). The CiberSortx results showed that the cell fraction of activated fibroblasts was six times higher in Inflamed_2 than in Inflamed_1. Validation with public gene expression datasets (GSE16879) revealed that the activated fibroblasts were enriched in NDRs over Next, we used DRs by 1.9 times pre-treatment and 7.5 times after treatment. Fibroblast activation protein (FAP) was overexpressed in the Inflamed_2 and was also overexpressed in the NDRs in both the RISK and GSE16879 datasets. The activation of fibroblasts may play a role in resistance to anti-TNF therapy. Characterizing fibroblasts in inflamed tissues at diagnosis may help to identify patients who are likely to respond to anti-TNF therapy.


Assuntos
Doença de Crohn , Humanos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Doença de Crohn/metabolismo , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , RNA/metabolismo , Fibroblastos/metabolismo , Necrose/metabolismo
3.
Nanotechnology ; 33(24)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35226891

RESUMO

A memristor is defined as a non-volatile memory switching two-terminal resistor, and a memristor with digital switching characteristics is widely studied as a next-generation non-volatile memory because of its simple structure, high integration density, and low power consumption. Recently, analog memristors with gradual resistance switching (RS) characteristics have garnered great attention because of their potential to implement artificial synapses that can emulate the brain functions. Transition metal oxides are thought to be strong candidate materials for the RS. In particular, tantalum oxide (TaOx)-based memristive devices provide stable and durable switching characteristics. TaOx-based memristors utilize analog switching characteristics and have excellent durability and reliability, so they can be applied as artificial synaptic device. In this study, the characteristics of analog RS using Ta2O5-based memristive devices were investigated. The current level of the Pt/Ta2O5/Pt memristors was improved by adjusting the thickness of Ta2O5. In particular, when an indium-tin-oxide (ITO) buffer layer was added to Ta2O5forming a Pt/ITO/Ta2O5/Pt heterostructured double-layer device, it showed more symmetrical potentiation and depression characteristics under both polarities than a single-layer device without ITO layer. The symmetrical and linear potentiation and depression characteristics are essential for the development of efficient memristor-based neuromorphic systems. Insertion of the ITO buffer layer improves linearity, symmetry, and stability of the analog RS properties of Ta2O5-based memristors to artificial synapses.

4.
Nanotechnology ; 33(42)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767964

RESUMO

An investigation was conducted with regard to the effect of etching process on the ferroelectric (FE) characteristics of different device structures with Al-doped HfO2thin films; further, the effect of the rapid thermal annealing temperature on the FE properties was elucidated using metal-ferroelectric-metal (MFM) capacitors using TiN electrodes with varying thickness and 4 at.% Al-doped HfO2FE layer. The capacitors were annealed at different temperatures after lithography and etching process; this was aimed at incorporating the FE-orthorhombic phase. The samples annealed after patterning were able to obtain improved FE characteristics due to the amount of tensile stress. The MFM devices that were initially patterned were also studied as a reference. We found that even though it required higher temperature and shorter time to introduce the FE phase, it exhibited more stable as well as promising FE properties and electrical performances with a relatively large remnant polarization (2Pr âˆ¼ 60µC cm-2), a coercive electric field of approximately 2 MV cm-1and high switching current density with less leakage. Our results indicate how the FE properties of the HfO2-based thin films can be engineered through suitable process sequence and post-annealing conditions, thereby verifying the applicable flexibility of FE-HfO2for semiconductor device integration.

5.
Soft Matter ; 17(13): 3603-3608, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33416826

RESUMO

For organic semiconductor crystals exhibiting anisotropic charge transport along different crystallographic directions, nanoconfinement is a powerful strategy to control crystal orientation by aligning the fast crystallographic growth direction(s) with the unconfined axis(es) of nanoconfining scaffolds. Here, design rules are presented to relate crystal morphology, scaffold geometry, and orientation control in solution-processed small-molecule crystals. Specifically, organic semiconductor triisopropylsilylethynyl pyranthrene needle-like crystals with a dimensionality of n = 1 and perylene platelike crystals with n = 2 were grown from solution within nanoconfining scaffolds comprising cylindrical nanopores with a dimensionality of m = 1, representing one unconfined dimension along the cylinder axis, and those comprising nanopillar arrays with a dimensionality of m = 2. For m = n systems, native crystal growth habits were preserved while the crystal orientation in n = m direction(s) was dictated by the geometry of the scaffold. For n≠m systems, on the other hand, orientation control was restricted within a single plane, either parallel or perpendicular to the substrate surface. Intriguingly, control over crystal shape was also observed for perylene crystals grown in cylindrical nanopores (n > m). Within the nanopores, crystal growth was restricted along a single direction to form a needle-like morphology. Once growth proceeded above the scaffold surface, the crystals adopted their native growth habit to form asymmetric T-shaped single crystals with concave corners. These findings suggest that nanoporous scaffolds with spatially-varying dimensionalities can be used to grow single crystals of complex shapes.

6.
Phys Rev Lett ; 125(18): 184502, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196248

RESUMO

The mobility of a fakir state droplet on a structured surface is fundamentally determined by the effective length of a microscopic contact line. However, it is largely unknown how the surface topography determines the effective contact line length. Based on the direct measurement of droplet adhesion force and the visualization of contact line, this work shows that effective contact line length is topography dependent as opposed to prior notion. On pored surfaces, contact line is not distorted, and the effective length approaches the droplet apparent perimeter regardless of pore dimensions. On pillared surfaces, the distortion of contact line is significantly dependent on the packing density of the pillar structures so that the effective length is as small as a pillar diameter on densely packed pillars and as large as a pillar perimeter on sparsely-packed pillars, while changing linearly between the two extremes.

7.
Langmuir ; 36(38): 11245-11254, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32902998

RESUMO

Although freezing of a droplet on cold surfaces is a universal phenomenon, its mechanisms are still inadequately understood, especially on the surfaces of which the temperature is lower than -60 °C. Here, we report the unique spontaneous deicing phenomena of a water droplet impacting on cold surfaces with a temperature as low as -120 °C. As a hydrophilic surface is cooled below a critically low temperature (e.g., -57 °C for a silicon surface with a native oxide), the impacting water droplet spontaneously delaminates from the substrate and freezes radially outward in a horizontal plane, as opposed to the typical upward freezing shown on a warmer surface. The self-delamination phenomenon is suppressed or reinstated by the combination of thermal and hydrophobic modifications of the surface, which can be taken advantage of for effective deicing schemes for icephobic surface applications.

8.
Langmuir ; 36(10): 2622-2628, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32133857

RESUMO

Advances made in fabrication of patterned surfaces with well-defined dimensions of topographic features and their lateral dissemination drive the progress in interpretation of liquid spreading, adhesion, and retreat on engineered solid surfaces. Despite extensive studies on liquid droplet spreading and adhesion on textured surfaces in recent years, conformation of the three-phase contact line and its effect on macroscopic contact angle and droplet adhesion remain the focus of intensive debate. Here, we investigate the effect of surface topography on the adhesion force of Cassie-Baxter-state droplets on concentric ring-textured hydrophobic surfaces having rings with lateral dimensions of 5, 10, and 45 µm and separated by 5, 6, and 7 µm trenches, respectively, with fixed depth of 15 µm. Unlike mostly tested surfaces textured with straight ridges, pores, and pillars, where the droplet base contact line is anisotropic and its conformation varies along the apparent boundary, concentric rings are symmetrical and reinforce the microscopic contact line to align to a circular one that reflects the shape of the pattern. In this study, adhesion forces were calculated based on surface tension and Laplace pressure forces and were compared with the experimental forces for both water and ethylene glycol droplets having a varying contact diameter on the concentric ring-pattern at the point of maximum adhesion force. Results show that the microscopic contact line of the liquid retains its circular shape controlled by circular rings of the pattern, irrespectively of the droplet base diameter larger than 0.8 mm, and there is a good agreement between the experimental and calculated adhesion forces.

9.
Nanotechnology ; 30(33): 335203, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31026860

RESUMO

For the potential switching bio-memory device application using DNA composite thin film, we fabricated and characterized the transparent and biocompatible resistive switching random access memory (RRAM) device within the structure stacking of Pt/Cu2+ doped salmon DNA/FTO, where Cu2+ doping into salmon DNA was solution-processed. The device shows good bipolar switching characteristics with SET and RESET processes at negative and positive sweeps, respectively, with switching memory window greater than 103 ratios. The device was observed to be in low resistance state as its pristine state and an initial RESET state was necessary to achieve programmable SET and RESET cycles. Based on the electrical characteristics of the Cu2+-doped salmon DNA-based RRAM device we propose a switching mechanism with the formation and rupture of conductive filaments due to the migration of Cu2+ during the electrical stress. Our understanding could contribute to the engineering of biomaterial memory switching medium for the environmentally benign, biocompatible and biodegradable memory storage devices.


Assuntos
Materiais Biocompatíveis/química , Cobre/química , DNA/química , Animais , Cátions Bivalentes/química , Impedância Elétrica , Eletrodos , Desenho de Equipamento , Luz , Nanoestruturas/química , Nanotecnologia/instrumentação , Platina/química , Salmão
10.
J Nanosci Nanotechnol ; 19(10): 6083-6086, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026912

RESUMO

In this paper, the dependency of low frequency noise as a function of the gate voltage was examined for tunneling field effect transistors (TFETs). When the level of gate voltage is low, the tunneling width of the TFETs is large. Thus, electrons move via the trap instead of tunneling directly. On the other hand, when the level of gate voltage is high, the tunneling width of the TFETs becomes narrow. Thus, when the gate voltage is low, the noise level of TFETs is high because electrons pass through the trap. However, when the gate voltage is high, electrons pass directly from valence band of source to conduction band of drain, so the noise level is low. Finding the voltage suitable for this TFET is important to determine the optimum conditions for generating BTBT when measuring TFETs and to reduce noise.

11.
J Nanosci Nanotechnol ; 19(10): 6131-6134, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026922

RESUMO

The positive bias temperature instability (PBTI) characteristics of fully depleted silicon on insulator (FD-SOI) tunneling field effect transistor (TFET) are investigated in comparison with those of metal oxide semiconductor field effect transistor (MOSFET) fabricated with the same technology process. Unlike some of the previously reported studies, in which the PBTI lifetime of TFET is much longer than that of MOSFET, in this study, the PBTI lifetime of TFET is found to be shorter than that of MOSFET. This result is very interesting, because degradation of electrical parameters of TFET is mainly affected by local traps near the source junction rather than global traps in the channel region. Large degradation of the electrical parameters of TFET due to PBTI stress would result from large fluctuation of the vertical electric field caused by traps near the source junction. This electric field fluctuation near the local region in TFET has more impact on electrical parameter degradation than channel conductivity fluctuation in MOSFET. Therefore, to improve the reliability characteristics of TFET, evaluation of PBTI characteristics and improvement of the quality of gate oxide near the source junction are essential.

12.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802194

RESUMO

The transmission of bacteria in biofilms from donor to receiver surfaces precedes the formation of biofilms in many applications. Biofilm transmission is different from bacterial adhesion, because it involves biofilm compression in between two surfaces, followed by a separation force leading to the detachment of the biofilm from the donor surface and subsequent adhesion to the receiver surface. Therewith, the transmission depends on a balance between donor and receiver surface properties and the cohesiveness of the biofilm itself. Here, we compare bacterial transmission from biofilms of an extracellular-polymeric-substance (EPS)-producing and a non-EPS-producing staphylococcal strain and a dual-species oral biofilm from smooth silicon (Si) donor surfaces to smooth and nanopillared Si receiver surfaces. Biofilms were fully covering the donor surface before transmission. However, after transmission, the biofilms only partly covered the donor and receiver surfaces regardless of nanopillaring, indicating bacterial transmission through adhesive failure at the interface between biofilms and donor surfaces as well as through cohesive failure in the biofilms. The numbers of bacteria per unit volume in EPS-producing staphylococcal biofilms before transmission were 2-fold smaller than in biofilms of the non-EPS-producing strain and of dual species. This difference increased after transmission in the biofilm left behind on the donor surfaces due to an increased bacterial density for the non-EPS-producing strain and a dual-species biofilm. This suggests that biofilms of the non-EPS-producing strain and dual species remained compressed after transmission, while biofilms of the EPS-producing strain were induced to produce more EPS during transmission and relaxed toward their initial state after transmission due to the viscoelasticity conferred to the biofilm by its EPS.IMPORTANCE Bacterial transmission from biofilm-covered surfaces to surfaces is mechanistically different from bacterial adhesion to surfaces and involves detachment from the donor and adhesion to the receiver surfaces under pressure. Bacterial transmission occurs, for instance, in food processing or packaging, in household situations, or between surfaces in hospitals. Patients admitted to a hospital room previously occupied by a patient with antibiotic-resistant pathogens are at elevated infection risk by the same pathogens through transmission. Nanopillared receiver surfaces did not collect less biofilm from a smooth donor than a smooth receiver, likely because the pressure applied during transmission negated the smaller contact area between bacteria and nanopillared surfaces, generally held responsible for reduced adhesion. Biofilm left behind on smooth donor surfaces of a non-extracellular-polymeric-substance (EPS)-producing strain and dual species had undergone different structural changes than an EPS-producing strain, which is important for their possible further treatment by antimicrobials or disinfectants.


Assuntos
Biofilmes , Staphylococcus/química , Fenômenos Biomecânicos , Elasticidade , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Staphylococcus/fisiologia , Propriedades de Superfície , Viscosidade
13.
Langmuir ; 34(17): 4945-4951, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29629765

RESUMO

Spontaneous spreading of a droplet on a solid surface is poorly understood from a macroscopic level down to a molecular level. Here, we investigate the effect of surface topography and wettability on spontaneous spreading of a water droplet. Spreading force is measured for a suspended droplet that minimizes interference of kinetic energy in the spontaneous spreading during its contact with solid surfaces of discontinuous (pillar) and continuous (pore) patterns with various shapes and dimensions. Results show that a droplet cannot spread spontaneously on pillared surfaces regardless of their shapes or dimensions because of the solid discontinuity. On the contrary, a droplet on pored surfaces can undergo spontaneous spreading whose force increases with a decrease in the advancing contact angle. Theoretical models based on both the system free energy and capillary force along the contact line validate the direct and universal dependency of the spontaneous spreading force on the advancing contact angle.

14.
Langmuir ; 34(46): 13821-13827, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30360623

RESUMO

Superhydrophobic surfaces have gained tremendous attention for icephobic properties, including anti-icing and deicing. The former is about how much a surface can delay the ice formation, whereas the latter is about how easy the surface can let the ice go off after freezing. In this study, superhydrophobic surfaces with different surface roughnesses and wettabilities were tested for both anti-icing and deicing purposes to investigate their correlation in association with the different surface properties. Anti-icing test was conducted by utilizing an icing wind tunnel to see how much ice gets accumulated on the surfaces in a dynamic condition (i.e., impacting supercooled water droplets by forced wind). For the deicing test, sessile droplets were frozen on the surfaces in a static condition (i.e., no wind) and then the shear adhesion forces were measured to disconnect the frozen ices off from the surfaces. The experimental results show that higher anti-icing efficacy does not necessarily mean higher deicing efficacy because of the different icing mechanisms. Although a superhydrophobic surface with a lower depinning force (or contact angle hysteresis) delays the ice accumulation in a dynamic condition more effectively, the same surface can require higher shear adhesion force for ice grown in a static condition where condensation and wetting state of a droplet are the key factors.

15.
Nanotechnology ; 29(41): 415204, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30051887

RESUMO

We performed various pulse measurements on an atomic layer deposited (ALD) HfO2-based resistive switching random access memory (RRAM) device and investigated its electronic synaptic characteristics. Unlike requirements for RRAM device application, to achieve the multi-state conductance changes required for the synaptic device, we employed additional sputtered TaOx thin film formation on the ALD HfO2 switching medium, which leads to engineering the concentration of oxygen vacancies and modulating the conductive filaments. With this TaOx/HfO2 bi-layered device, we attained gradual resistive switching, linear and symmetric conductance change, improved endurance and reproducibility characteristics compared to a single HfO2 device. Finally, we emulated spike-timing-dependent plasticity based learning rule with pulses inspired by neural action potential, indicating its potential as an electronic synaptic device in a hardware neuromorphic system.

16.
Mikrochim Acta ; 186(1): 34, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30564970

RESUMO

The authors describe an isothermal and ultrasensitive colorimetric DNA assay that consists of two amplification stages using enzymes and a catalytic hairpin assembly (CHA). The first step consists in the selective amplification of DNA using Klenow fragment and nicking enzyme. The second step consists in the amplification of the optical signal by using a catalytic hairpin assembly. After two amplification steps, the DNA reaction induces the aggregation of the red gold nanoparticles to give a blue color shift. The degree of aggregation can be quantified by measurement of the ratio of the UV-vis absorbances of the solutions at 620 and 524 nm which are the wavelengths of the aggregated gold nanoparticles and bare gold nanoparticles. The detection limit is as low as 3.1 fM. Due to the use of a specific enzyme, only the desired DNAs will be detected. The method can be applied to the determination of DNA of various lengths. Despite the presence of large amounts of wildtype DNA, it can readily detect a target DNA. Conceivably, the technique has a large potential because of its high sensitivity and selectivity. Graphical abstract Schematic presentation of DNA detection using gold nanoparticles (AuNP), enzymes and catalytic hairpin assembly (CHA). Effective DNA detection is achieved through the aggregation of AuNPs which is caused by DNA amplification using enzymes and signal amplification using CHA.


Assuntos
DNA/análise , Ouro , Catálise , Colorimetria , Corantes/química , Nanopartículas Metálicas , Técnicas de Amplificação de Ácido Nucleico
17.
Langmuir ; 33(43): 12016-12027, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28982237

RESUMO

The movement of a single air bubble on an inclined hydrophobic surface submerged in water, including both the upward- and downward-facing sides of the surface, was investigated. A planar Teflon sheet with an apparent contact angle of a sessile water droplet of 106° was used as a hydrophobic surface. The volume of a bubble and the inclination angle of a Teflon sheet varied in the ranges 5-40 µL and 0-45°, respectively. The effects of the bubble volume on the adhesion and dynamics of the bubble were studied experimentally on the facing-up and facing-down surfaces of the submerged hydrophobic Teflon sheet, respectively, and compared. The result shows that the sliding angle has an inverse relationship with the bubble volume for both the upward- and downward-facing surfaces. However, at the same given volume, the bubble on the downward-facing surface spreads over a larger area of the hydrophobic surface than the upward-facing surface due to the greater hydrostatic pressure acting on the bubble on the downward-facing surface. This makes the lateral adhesion force of the bubble greater and requires a larger inclination angle to result in sliding.

18.
Langmuir ; 33(47): 13640-13648, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096056

RESUMO

Inspired by the Salvinia effect, we report the fabrication and characterization of a novel "sticky" superhydrophobic surface sustaining a Cassie-Baxter wetting state for water droplets with high contact angles but strong solid-liquid retention. Unlike superhydrophobic surfaces mimicking the lotus or petal effect, whose hydrophobicity and droplet retention are typically regulated by hierarchical micro- and nanostructures made of a homogeneous material with the same surface energy, our superhydrophobic surface merely requires singular microstructures covered with a hydrophobic coating but creatively coupled with hydrophilic tips with different surface energy. Hydrophilic tips are selectively formed by meniscus-confined electrodeposition of a metal (e.g., nickel) layer on top of hydrophobic microstructures. During the electrodeposition process, the superhydrophobic surface retains its plastron so that the electrolyte cannot penetrate into the cavity of hydrophobic microstructures, consequently making the electrochemical reaction between solid and electrolyte occur only on the tip. In contrast to typical superhydrophobic surfaces where droplets are highly mobile, the "sticky" superhydrophobic surface allows a water droplet to have strong local pinning and solid-liquid retention on the hydrophilic tips, which is of great significance in many droplet behaviors such as evaporation.

19.
Langmuir ; 33(27): 6885-6894, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28618226

RESUMO

A one-step maskless oxygen plasma etching process is investigated to nanopattern conjugated polymer dodecylbenzenesulfonate doped polypyrrole (PPy(DBS)) and to examine the effects of nanostructures on the inherent tunable wettability of the surface and the droplet mobility. Etching characteristics such as the geometry and dimensions of the nanostructures are systematically examined for the etching power and duration. The mechanism of self-formation of vertically aligned dense-array pillared nanostructures in the one-step maskless oxygen plasma etching process is also investigated. Results show that lateral dimensions such as the periodicity and diameter of the pillared nanostructures are insensitive to the etching power and duration, whereas the length and aspect ratio of the nanostructures increase with them. X-ray photoelectron spectroscopy analysis and thermal treatment of the polymer reveal that the codeposition of impurities on the surface resulting from the holding substrate is the primary reason for the self-formation of nanostructures during the oxygen plasma etching, whereas the local crystallinity subject to thermal treatment has a minor effect on the lateral dimensions. Retaining the tunable wettability (oleophobicity) for organic droplets during the electrochemical redox (i.e., reduction and oxidization) process, the nanotextured PPy(DBS) surface shows significant enhancement of droplet mobility compared to that of the flat PPy(DBS) surface with no nanotexture by making the surface superoleophobic (i.e., in a Cassie-Baxter wetting state). Such enhancement of the tunable oleophobicity and droplet mobility of the conjugated polymer will be of great significance in many applications such as microfluidics, lab-on-a-chip devices, and water/oil treatment.

20.
Nanotechnology ; 28(46): 465303, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28914234

RESUMO

It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA