Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Environ Sci Technol ; 56(3): 1627-1638, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35060377

RESUMO

Wastewater-based epidemiology is a potential complementary technique for monitoring the use of performance- and image-enhancing drugs (PIEDs), such as anabolic steroids and selective androgen receptor modulators (SARMs), within the general population. Assessing in-sewer transformation and degradation is critical for understanding uncertainties associated with wastewater analysis. An electrospray ionization liquid chromatography mass spectrometry method for the quantification of 59 anabolic agents in wastewater influent was developed. Limits of detection and limits of quantification ranged from 0.004 to 1.56 µg/L and 0.01 to 4.75 µg/L, respectively. Method performance was acceptable for linearity (R2 > 0.995, few exceptions), accuracy (68-119%), and precision (1-21%RSD), and applicability was successfully demonstrated. To assess the stability of the selected biomarkers in wastewater, we used laboratory-scale sewer reactors to subject the anabolic agents to simulated realistic sewer environments for 12 h. Anabolic agents, including parent compounds and metabolites, were spiked into freshly collected wastewater that was then fed into three sewer reactor types: control sewer (no biofilm), gravity sewer (aerobic conditions), and rising main sewer (anaerobic conditions). Our results revealed that while most glucuronide conjugates were completely transformed following 12 h in the sewer reactors, 50% of the investigated biomarkers had half-lives longer than 4 h (mean residence time) under gravity sewer conditions. Most anabolic agents were likely subject to biofilm sorption and desorption. These novel results lay the groundwork for any future wastewater-based epidemiology research involving anabolic steroids and SARMs.


Assuntos
Anabolizantes , Poluentes Químicos da Água , Biomarcadores , Humanos , Receptores Androgênicos , Esgotos , Congêneres da Testosterona , Águas Residuárias/química , Poluentes Químicos da Água/análise
2.
Proc Natl Acad Sci U S A ; 116(43): 21864-21873, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591193

RESUMO

Wastewater is a potential treasure trove of chemicals that reflects population behavior and health status. Wastewater-based epidemiology has been employed to determine population-scale consumption of chemicals, particularly illicit drugs, across different communities and over time. However, the sociodemographic or socioeconomic correlates of chemical consumption and exposure are unclear. This study explores the relationships between catchment specific sociodemographic parameters and biomarkers in wastewater generated by the respective catchments. Domestic wastewater influent samples taken during the 2016 Australian census week were analyzed for a range of diet, drug, pharmaceutical, and lifestyle biomarkers. We present both linear and rank-order (i.e., Pearson and Spearman) correlations between loads of 42 biomarkers and census-derived metrics, index of relative socioeconomic advantage and disadvantage (IRSAD), median age, and 40 socioeconomic index for area (SEIFA) descriptors. Biomarkers of caffeine, citrus, and dietary fiber consumption had strong positive correlations with IRSAD, while tramadol, atenolol, and pregabalin had strong negative correlation with IRSAD. As expected, atenolol and hydrochlorothiazide correlated positively with median age. We also found specific SEIFA descriptors such as occupation and educational attainment correlating with each biomarker. Our study demonstrates that wastewater-based epidemiology can be used to study sociodemographic influences and disparities in chemical consumption.


Assuntos
Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias/análise , Águas Residuárias/química , Austrália , Análise de Alimentos , Humanos , Preparações Farmacêuticas/análise , Fatores Socioeconômicos
3.
Anal Chem ; 93(49): 16562-16570, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843646

RESUMO

Centroiding is one of the major approaches used for size reduction of the data generated by high-resolution mass spectrometry. During centroiding, performed either during acquisition or as a pre-processing step, the mass profiles are represented by a single value (i.e., the centroid). While being effective in reducing the data size, centroiding also reduces the level of information density present in the mass peak profile. Moreover, each step of the centroiding process and their consequences on the final results may not be completely clear. Here, we present Cent2Prof, a package containing two algorithms that enables the conversion of the centroided data to mass peak profile data and vice versa. The centroiding algorithm uses the resolution-based mass peak width parameter as the first guess and self-adjusts to fit the data. In addition to the m/z values, the centroiding algorithm also generates the measured mass peak widths at half-height, which can be used during the feature detection and identification. The mass peak profile prediction algorithm employs a random-forest model for the prediction of mass peak widths, which is consequently used for mass profile reconstruction. The centroiding results were compared to the outputs of the MZmine-implemented centroiding algorithm. Our algorithm resulted in rates of false detection ≤5% while the MZmine algorithm resulted in 30% rate of false positive and 3% rate of false negative. The error in profile prediction was ≤56% independent of the mass, ionization mode, and intensity, which was 6 times more accurate than the resolution-based estimated values.


Assuntos
Aprendizado de Máquina
4.
Environ Sci Technol ; 55(11): 7418-7429, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34014086

RESUMO

The in-sample stability of selected pharmaceuticals, illicit drugs, and their metabolites in wastewater was assessed under six different conditions-untreated, addition of hydrochloric acid or sodium metabisulfite solution, combined with or without sterile filtration, and at four representative temperatures, at 35 °C for up to 28 days, 22 °C for 56 days, and 4 °C and -20 °C for 196 days, or freeze/thaw cycles for 24 weeks. Paracetamol, 6-monoacetylmorphine, morphine, and cocaine were poorly stable in untreated wastewater-e.g., with 50% transformation within 1.2-8.1 days at 22 °C, and acidification reduced their in-sample transformations. Acesulfame, carbamazepine, cotinine, methamphetamine, 3,4-methylenedioxy-methamphetamine (MDMA), ketamine, norfentanyl, 3,4-methylenedioxy-N-ethylamphetamine (MDEA), and norbuprenorphine were highly or moderately stable over the observed period, even in untreated wastewater. Fitting of pseudo-first-order kinetics and the Arrhenius equation was used to develop a multistage transformation estimation model combined with an interactive tool to evaluate possible transformation scenarios of selected biomarkers for the processes from sampling to preanalysis. However, as the wastewater composition can vary between sites and over time, the variability of in-sample stability requires further exploration.


Assuntos
Cocaína , Drogas Ilícitas , Metanfetamina , Poluentes Químicos da Água , Cocaína/análise , Detecção do Abuso de Substâncias , Águas Residuárias/análise , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 55(11): 7551-7560, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33988986

RESUMO

The correction factor (CF) is a critical parameter in wastewater-based epidemiology (WBE) that significantly influences the accuracy of the final consumption estimates. However, most CFs have been derived from a few old pharmacokinetic studies and should be re-evaluated and refined to improve the accuracy of the WBE approach. This study aimed to review and estimate the CFs for atenolol, carbamazepine, and naproxen for WBE using the daily mass loads of those pharmaceuticals in wastewater and their corresponding dispensed prescription data in Australia. Influent wastewater samples were collected from wastewater treatment plants serving approximately 24% of the Australian population and annual national dispensed prescription data. The estimated CFs for atenolol and carbamazepine are 1.37 (95% CI: 1.17-1.66) and 8.69 (95% CI: 7.66-10.03), respectively. Due to significant over-the-counter sales of naproxen, a reliable CF could not be estimated based on prescription statistics. Using an independent dataset of 186 and 149 wastewater samples collected in an urban catchment in 2011 and 2012, WBE results calculated using the new CFs matched well with the dispensed data for atenolol and carbamazepine in the catchment area.


Assuntos
Vigilância Epidemiológica Baseada em Águas Residuárias , Poluentes Químicos da Água , Atenolol , Austrália , Carbamazepina , Naproxeno , Prescrições , Águas Residuárias/análise , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 54(23): 15132-15141, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200922

RESUMO

Plastics are contaminants of emerging concern that can enter the environment from multiple sources, including via land application of treated sewage sludge (biosolids). Biosolids samples collected from 82 wastewater treatment plants (WWTPs) across Australia and covering 34% of the population during census week in 2016 were quantitatively analyzed to estimate the release of seven common plastics. Quantitative analysis was performed by pressurized liquid extraction followed by double-shot microfurnace pyrolysis coupled to gas chromatography mass spectrometry. Ninety nine percent of the samples contained plastics (Σ6plastics) at concentrations of between 0.4 and 23.5 mg/g dry weight (median; 10.4 mg/g dry weight), while polycarbonate was not detected in any sample. Per-capita mass loads of plastics (Σ6plastics) released were between 8 and 877 g/person/year across all investigated WWTPs. Polyethylene was the predominant plastic detected, contributing to 69% of Σ6plastics. Based on the concentrations measured, it was projected that around 4700 metric tons (Mt) of plastics are released into the Australian environment through biosolids end-use each year, equating to approximately 200 g/person/year, which represents 0.13% of total plastics use in Australia. Of this, 3700 Mt of plastics are released to agricultural lands and 140 Mt to landscape topsoil. Our results provide a first quantitative per-capita mass loads and emission estimate of plastic types through biosolids end-use.


Assuntos
Plásticos , Poluentes Químicos da Água , Austrália , Biossólidos , Humanos , Esgotos , Poluentes Químicos da Água/análise
7.
Environ Res ; 182: 109048, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31865166

RESUMO

Our previous biomonitoring study of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in a population in Australia found high levels of 1-naphthol, a metabolite of both naphthalene and carbaryl, in some adult samples. Here, we conducted a follow-up study to collect and analyse pooled urine samples, stratified by age and sex, from 2014 to 2017 using a GC-MS method. Geometric mean concentrations of 1-hydroxypyrene, the most common biomarker of PAH exposure, were 100 and 120 ng/L urine in 2014-2015 and 2016-2017, respectively. The concentrations of most OH-PAHs in this study except 1-naphthol are in line with those reported by biomonitoring programs in the US and Canada. In general, concentrations of OH-PAHs are lower in samples from small children (0-4 years) and school-aged children (5-14 years) compared with samples from the older age groups, except for some cases in the recent monitoring period. The concentrations of 1-naphthol in some adult samples of both sexes are very high, which is consistent with our previous findings. Such high concentrations of 1-naphthol together with the high 1-naphthol/2-naphthol ratio suggest potential exposure to the insecticide carbaryl in this population but other exposure sources and different rates of naphthalene metabolism should also be investigated.


Assuntos
Biomarcadores , Cotinina , Exposição Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Adolescente , Adulto , Idoso , Austrália , Biomarcadores/urina , Canadá , Criança , Pré-Escolar , Cotinina/metabolismo , Cotinina/urina , Monitoramento Ambiental , Feminino , Seguimentos , Humanos , Masculino , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/urina
8.
Water Res ; 249: 120978, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071905

RESUMO

Monitoring urinary markers of dietary, disease, and stress by wastewater-based epidemiology (WBE) is a promising tool to better understand population health and wellbeing. However, common urinary biomarkers are subject to degradation in sewer systems and their fates have to be assessed before they can be used in WBE. This study investigated the stability of 31 urinary biomarkers (12 food biomarkers, 8 vitamins, 9 oxidative stress biomarkers, and 1 histamine biomarker) in a laboratory sewer sediment reactor and evaluated their suitability for WBE, considering their detectability in real wastewater and in-sewer stability. These biomarkers showed various transformation patterns, among which 16 compounds had half-lives <2 h while other 15 compounds presented moderate to high stability (2 to >500 h). Thirteen biomarkers showed potential for WBE because of their consistently measurable concentrations in untreated wastewater and sufficient in-sewer stability. Eighteen biomarkers were unsuitable due to their rapid in-sewer degradation and/or undetectable concentration levels in untreated wastewater using previous methods. Transformation rates of these biomarkers showed generally weak relationships with molecular properties but relatively higher correlations with biological activities in sewers. Overall, this study determined in-sewer stability of 31 health-related biomarkers through laboratory experiments, providing new findings to WBE for population health assessment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Vigilância Epidemiológica Baseada em Águas Residuárias , Poluentes Químicos da Água/análise , Biomarcadores , Alimentos , Esgotos
9.
Water Res X ; 23: 100224, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38711798

RESUMO

The ongoing evolution of SARS-CoV-2 is a significant concern, especially with the decrease in clinical sequencing efforts, which impedes the ability of public health sectors to prepare for the emergence of new variants and potential COVID-19 outbreaks. Wastewater-based epidemiology (WBE) has been proposed as a surveillance program to detect and monitor the SARS-CoV-2 variants being transmitted in communities. However, research is limited in evaluating the effectiveness of wastewater collection at sentinel sites for monitoring disease prevalence and variant dynamics, especially in terms of inferring the epidemic patterns on a broader scale, such as at the state/province level. This study utilized a multiplexed tiling amplicon-based sequencing (ATOPlex) to track the longitudinal dynamics of variant of concern (VOC) in wastewater collected from municipalities in Queensland, Australia, spanning from 2020 to 2022. We demonstrated that wastewater epidemiology measured by ATOPlex exhibited a strong and consistent correlation with the number of daily confirmed cases. The VOC dynamics observed in wastewater closely aligned with the dynamic profile reported by clinical sequencing. Wastewater sequencing has the potential to provide early warning information for emerging variants. These findings suggest that WBE at sentinel sites, coupled with sensitive sequencing methods, provides a reliable and long-term disease surveillance strategy.

10.
Trop Med Infect Dis ; 8(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37104337

RESUMO

INTRODUCTION: During the first two years of the COVID-19 pandemic, Australia implemented a series of international and interstate border restrictions. The state of Queensland experienced limited COVID-19 transmission and relied on lockdowns to stem any emerging COVID-19 outbreaks. However, early detection of new outbreaks was difficult. In this paper, we describe the wastewater surveillance program for SARS-CoV-2 in Queensland, Australia, and report two case studies in which we aimed to assess the potential for this program to provide early warning of new community transmission of COVID-19. Both case studies involved clusters of localised transmission, one originating in a Brisbane suburb (Brisbane Inner West) in July-August 2021, and the other originating in Cairns, North Queensland in February-March 2021. MATERIALS AND METHODS: Publicly available COVID-19 case data derived from the notifiable conditions (NoCs) registry from the Queensland Health data portal were cleaned and merged spatially with the wastewater surveillance data using statistical area 2 (SA2) codes. The positive predictive value and negative predictive value of wastewater detection for predicting the presence of COVID-19 reported cases were calculated for the two case study sites. RESULTS: Early warnings for local transmission of SARS-CoV-2 through wastewater surveillance were noted in both the Brisbane Inner West cluster and the Cairns cluster. The positive predictive value of wastewater detection for the presence of notified cases of COVID-19 in Brisbane Inner West and Cairns were 71.4% and 50%, respectively. The negative predictive value for Brisbane Inner West and Cairns were 94.7% and 100%, respectively. CONCLUSIONS: Our findings highlight the utility of wastewater surveillance as an early warning tool in low COVID-19 transmission settings.

11.
Curr Opin Environ Sci Health ; 33: 100458, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37034453

RESUMO

Wastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models. Further specific research is essential in the monitoring of other viral pathogens with pandemic potential and subcatchment applications to maximize the benefits of WBE beyond COVID-19.

12.
Water Res ; 222: 118891, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907300

RESUMO

Human and animal source-separated urine, stored and allowed to naturally hydrolyse (the bio-catalysed transformation of urea to ammonia and bicarbonate), has been used for millennia as a fertiliser in agriculture. In a context of growing water scarcity and climate uncertainty, source-separation of urine is facing a strong revival thanks to the emergence of cost-effective waterless collection systems. Concomitantly, urine source-separation can be used as a method for nutrient recovery and subsequent reuse. In its simplest form, such recovery consists of collection followed by urea hydrolysis and storage as sole treatment. Numerous guidelines, including by the World Health Organisation, consider that this is sufficient to stabilise the nutrients and inactivate any potential pathogens in the urine. However, it is still unclear whether said urine is effectively free from other compounds of concern, such as anthropogenic micropollutants with known toxicological effects. Moreover, it is also currently unknown if the metabolites produced by human consumption of these products behave in similar way during short- and long-term storage i.e. whether any changes in chemical structure mean that these could be sorbed and/or precipitated in a different way, or if they can potentially be degraded by the biomass inherently present in urine collection systems. Finally, there is currently no knowledge of whether the observed concentrations of micropollutants in stored hydrolysed urine could potentially have toxicological effects if/when applied to soils and edible crops. To fill these research gaps, 20 commonly consumed compounds were selected in this study and their concentrations in the liquid and solid phases studied in the short- and long-term (up to ≥ 2 years). During the initial process of urea hydrolysis (≤ 5 days), ethyl-glucuronide was the sole compound effectively removed (by deconjugation), while only two other compounds, erythromycin and its metabolite, saw a reduction in their concentration (likely due to biomass sorption). Subsequently, during early storage (≤ 15 days), only three additional compounds were removed: paracetamol (> 99%), acesulfame (11.5%) and carbamazepine-10,11 epoxide (40.7%). Finally, long-term storage of up to 24 months did not result in any further significant removal for any of the measured compounds, indicating that the procedure of hydrolysis + storage is not effective for the removal of anthropogenic micropollutants. The results of this investigation raise strong concerns about the direct reuse of hydrolysed/stored human source-separated urine, and evidence the need for post-processing before implementation as fertiliser into edible crops due to the inherent toxicological risk, particularly to infants.


Assuntos
Fertilizantes , Ureia , Agricultura , Amônia/análise , Fertilizantes/análise , Humanos , Hidrólise , Ureia/química , Urina/química
13.
ACS ES T Water ; 2(11): 1871-1880, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36380768

RESUMO

We compared reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RT digital PCR (RT-dPCR) platforms for the trace detection of SARS-CoV-2 RNA in low-prevalence COVID-19 locations in Queensland, Australia, using CDC N1 and CDC N2 assays. The assay limit of detection (ALOD), PCR inhibition rates, and performance characteristics of each assay, along with the positivity rates with the RT-qPCR and RT-dPCR platforms, were evaluated by seeding known concentrations of exogenous SARS-CoV-2 in wastewater. The ALODs using RT-dPCR were approximately 2-5 times lower than those using RT-qPCR. During sample processing, the endogenous (n = 96) and exogenous (n = 24) SARS-CoV-2 wastewater samples were separated, and RNA was extracted from both wastewater eluates and pellets (solids). The RT-dPCR platform demonstrated a detection rate significantly greater than that of RT-qPCR for the CDC N1 and CDC N2 assays in the eluate (N1, p = 0.0029; N2, p = 0.0003) and pellet (N1, p = 0.0015; N2, p = 0.0067) samples. The positivity results also indicated that for the analysis of SARS-CoV-2 RNA in wastewater, including the eluate and pellet samples may further increase the detection sensitivity using RT-dPCR.

14.
Sci Total Environ ; 805: 149877, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818780

RESUMO

Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.


Assuntos
COVID-19 , Pandemias , Humanos , Estudos Prospectivos , RNA Viral , Reprodutibilidade dos Testes , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
15.
Front Pharmacol ; 12: 795455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002728

RESUMO

Given the important role of voltage-gated sodium (NaV) channel-modulating spider toxins in elucidating the function, pharmacology, and mechanism of action of therapeutically relevant NaV channels, we screened the venom from Australian theraphosid species against the human pain target hNaV1.7. Using assay-guided fractionation, we isolated a 33-residue inhibitor cystine knot (ICK) peptide (Ssp1a) belonging to the NaSpTx1 family. Recombinant Ssp1a (rSsp1a) inhibited neuronal hNaV subtypes with a rank order of potency hNaV1.7 > 1.6 > 1.2 > 1.3 > 1.1. rSsp1a inhibited hNaV1.7, hNaV1.2 and hNaV1.3 without significantly altering the voltage-dependence of activation, inactivation, or delay in recovery from inactivation. However, rSsp1a demonstrated voltage-dependent inhibition at hNaV1.7 and rSsp1a-bound hNaV1.7 opened at extreme depolarizations, suggesting rSsp1a likely interacted with voltage-sensing domain II (VSD II) of hNaV1.7 to trap the channel in its resting state. Nuclear magnetic resonance spectroscopy revealed key structural features of Ssp1a, including an amphipathic surface with hydrophobic and charged patches shown by docking studies to comprise the interacting surface. This study provides the basis for future structure-function studies to guide the development of subtype selective inhibitors.

16.
Sci Total Environ ; 789: 148047, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34323839

RESUMO

The medical and societal consequences of the misuse of pharmaceuticals clearly justify the need for comprehensive drug utilization research (DUR). Wastewater-based epidemiology (WBE) employs the analysis of human metabolic excretion products in wastewater to monitor consumption patterns of xenobiotics at the population level. Recently, WBE has demonstrated its potential to evaluate lifestyle factors such as illicit drug, alcohol and tobacco consumption at the population level, in near real-time and with high spatial and temporal resolution. Up until now there have been fewer WBE studies investigating health biomarkers such as pharmaceuticals. WBE publications monitoring the consumption of pharmaceuticals were systematically reviewed from three databases (PubMed, Web of Science and Google Scholar). 64 publications that reported population-normalised mass loads or defined daily doses of pharmaceuticals were selected. We document that WBE could be employed as a complementary information source for DUR. Interest in using WBE approaches for monitoring pharmaceutical use is growing but more foundation research (e.g. compound-specific uncertainties) is required to link WBE data to routine pharmacoepidemiologic information sources and workflows. WBE offers the possibility of i) estimating consumption of pharmaceuticals through the analysis of human metabolic excretion products in wastewater; ii) monitoring spatial and temporal consumption patterns of pharmaceuticals continuously and in near real-time; and iii) triangulating data with other DUR information sources to assess the impacts of strategies or interventions to reduce inappropriate use of pharmaceuticals.

17.
J Thromb Haemost ; 19(6): 1585-1588, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34018298

RESUMO

Vaccine administration is under way worldwide to combat the current COVID-19 pandemic. The newly developed vaccines are highly effective with minimal adverse effects. Recently, the AstraZeneca ChadOx1 nCov-19 vaccine has raised public alarm with concerns regarding the rare, but serious, development of thrombotic events, now known as vaccine-induced immune thrombotic thrombocytopenia (VITT). These thrombotic events appear similar to heparin-induced thrombocytopenia, both clinically and pathologically. In this manuscript, the ISTH SSC Subcommittee on Platelet Immunology outlines guidelines on how to recognize, diagnose and manage patients with VITT.


Assuntos
COVID-19 , Vacinas , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Técnicas de Laboratório Clínico , Comunicação , Humanos , Pandemias , SARS-CoV-2
18.
Sci Total Environ ; 754: 142438, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254907

RESUMO

A 7-year temporal trend study of artificial sweetener consumption was performed by determining per capital mass loads in 293 influent wastewater samples collected from a wastewater treatment plant in Australia between 2012 and 2018. Population-weighted per capita mass loads of the four detected artificial sweeteners ranged from 2.4 ± 0.8 mg d-1 p-1 for saccharin to 7.8 ± 2.0 mg d-1 p-1 for acesulfame over the study period. Negligible intra-week fluctuations were observed, however the consumption of acesulfame was seen to be significantly influenced by season with the highest consumption in summer. The consumption of sucralose and saccharin significantly increased with an annual increase rate of 10% and 6.0%. Cyclamate consumption declined over the same period with average annual decrease rate of 11%, which agrees with data from market surveys. Sucrose equivalence of total artificial sweeteners consumption showed an increase between 2012 and 2016, then decreased in 2018. This is the first long-term trend study of artificial sweetener consumption by wastewater analysis and highlights the feasibility to quantitatively measure artificial sweeter consumption over time.


Assuntos
Edulcorantes , Vigilância Epidemiológica Baseada em Águas Residuárias , Austrália , Ciclamatos , Queensland , Edulcorantes/análise
19.
Sci Total Environ ; 761: 144216, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360129

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus which causes coronavirus disease (COVID-19), has spread rapidly across the globe infecting millions of people and causing significant health and economic impacts. Authorities are exploring complimentary approaches to monitor this infectious disease at the community level. Wastewater-based epidemiology (WBE) approaches to detect SARS-CoV-2 RNA in municipal wastewater are being implemented worldwide as an environmental surveillance approach to inform health authority decision-making. Owing to the extended excretion of SARS-CoV-2 RNA in stool, WBE can surveil large populated areas with a longer detection window providing unique information on the presence of pre-symptomatic and asymptomatic cases that are unlikely to be screened by clinical testing. Herein, we analysed SARS-CoV-2 RNA in 24-h composite wastewater samples (n = 63) from three wastewater treatment plants (WWTPs) in Brisbane, Queensland, Australia from 24th of February to 1st of May 2020. A total of 21 samples were positive for SARS-CoV-2, ranging from 135 to 11,992 gene copies (GC)/100 mL of wastewater. Detections were made in a Southern Brisbane WWTP in late February 2020, up to three weeks before the first clininal case was reported there. Wastewater samples were generally positive during the period with highest caseload data. The positive SARS-CoV-2 RNA detection in wastewater while there were limited clinical reported cases demonstrates the potential of WBE as an early warning system to identify hotspots and target localised public health responses, such as increased individual testing and the provision of health warnings.


Assuntos
COVID-19 , Coronavirus , Austrália , Humanos , Queensland , RNA , SARS-CoV-2 , Águas Residuárias
20.
Kardiol Pol ; 68(2): 183-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20301027

RESUMO

In the case of multiple trabecular ventricular septal defects, it is difficult to identify the exact locations and margins because of trabeculations of the right ventricle. It is also well known that ventriculotomy for closure of ventricular septal defects sometimes causes postoperative ventricular dysfunction or arrhythmia. To overcome these problems, we used the 'sandwich patch technique' to repair multiple trabecular ventricular septal defects.


Assuntos
Anormalidades Múltiplas/cirurgia , Comunicação Interventricular/cirurgia , Anormalidades Múltiplas/diagnóstico por imagem , Criança , Feminino , Comunicação Interventricular/diagnóstico por imagem , Ventrículos do Coração/cirurgia , Humanos , Resultado do Tratamento , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA