RESUMO
A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.
Assuntos
Ecossistema , Fósseis , Ecologia , Plantas , FenótipoRESUMO
Green stem photosynthesis has been shown to be relatively inefficient but can occasionally contribute significantly to the carbon budget of desert plants. Although the possession of green photosynthetic stems is a common trait, little is known about their photosynthetic characteristics in non-desert species. Dianthus caryophyllus is a semi-woody species with prominent green stems, which show similar photosynthetic anatomy with leaves. In the present study, we used a combination of gas exchange and chlorophyll fluorescence measurements, some of which were taken under varying O2 and CO2 partial pressures, to investigate whether the apparent anatomical similarities between the species' leaves and stems translate into similar photosynthetic physiology and capacity for CO2 assimilation. Both organs displayed high photosynthetic electron transport rates (ETR) and similar values of steady-state non-photochemical quenching (NPQ), albeit leaves could attain them faster. The analysis of OJIP transients showed that the quantum efficiencies and energy fluxes along the photosynthetic electron transport chain are largely similar between leaves and stems. Stems displayed higher total conductance to CO2 diffusion, similar biochemical properties, significantly higher photosynthetic rates and lower water use efficiency than leaves. Leaf ETR was more sensitive to sub-ambient O2 and super-ambient CO2 partial pressures, while leaves also displayed a higher relative rate of Rubisco oxygenation. We conclude that the highly responsive NPQ and the enhanced photorespiration and WUE in leaves represent photoprotective and water-conserving adaptations to the high incident light intensities they experience naturally, at the expense of higher CO2 assimilation rates, which the vertically orientated stems can readily attain.
Assuntos
Dióxido de Carbono , Clorofila , Fotossíntese , Folhas de Planta , Caules de Planta , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Caules de Planta/fisiologia , Caules de Planta/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Oxigênio/metabolismo , Difusão , Ribulose-Bifosfato Carboxilase/metabolismo , LuzRESUMO
Leaf development is influenced by almost all the prevailing environmental conditions as well as from the conditions at the time of bud formation. Furthermore, the growth form of a plant determines the leaf longevity and subsequently the investment in biomass and the internal structure of the mesophyll. Therefore, photosynthetic traits of a growing leaf, though, partly predetermined, should also acclimate to temporal changes during developmental period. In addition, the age of the plant can affect photosynthesis of the growing leaf, yet, in the majority of studies, the age is associated to the size of the plant. To test if the reproductive status of the plant affects the time kinetics of the photosynthetic capacity of a growing leaf and the relative contribution of the plants' growth form to the whole procedure, field measurements were conducted in juveniles (prereproductive individuals) and adults (fully reproductive individuals) of an evergreen sclerophyllous shrub (Nerium oleander), a semi-deciduous dimorphic shrub (Phlomis fruticosa), and a winter deciduous tree with pre-leafing flowering (Cercis siliquastrum). PSII structural and functional integrity was progressively developed in all species, but already completed, only some days after leaf expansion in P. fruticosa. Developing leaf as well as fully developed leaf in adults of C. siliquastrum showed enhanced relative size of the pool of final PSI electron acceptors. Photosynthetic traits between juveniles and adults of P. fruticosa were similar, though the matured leaf of adults exhibited lower transpiration rates and improved water-use efficiency than that of juveniles. Adults of the evergreen shrub attained higher CO2 assimilation rate than juveniles in matured leaf which can be attributed to higher electron flow devoted to carboxylation, and lower photorespiration rate. The reproductive phase of the plant seemed to be involved in modifications of the PSII and PSI functions of the deciduous tree, in carboxylation and photorespiration traits of the evergreen shrub, and in water conductance efficiency of the semi-deciduous shrub. However, it is interesting, that regardless of the growth form of the plant and the prospective leaf longevity of the developing leaf, adults need to support flowering outmatch juveniles, in terms of photosynthesis.
Assuntos
Fabaceae/crescimento & desenvolvimento , Nerium/crescimento & desenvolvimento , Phlomis/crescimento & desenvolvimento , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Clorofila/análise , Clorofila/fisiologia , Fabaceae/fisiologia , Fluorescência , Região do Mediterrâneo , Nerium/fisiologia , Nitrogênio/análise , Phlomis/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Água/análiseRESUMO
Fruit photosynthesis occurs in an internal microenvironment seldom encountered by a leaf (hypoxic and extremely CO2-enriched) due to its metabolic and anatomical features. In this study, the anatomical and photosynthetic traits of fully exposed green fruits of Quercus coccifera L. were assessed during the period of fruit production (summer) and compared to their leaf counterparts. Our results indicate that leaf photosynthesis, transpiration and stomatal conductance drastically reduced during the summer drought, while they recovered significantly after the autumnal rainfalls. In acorns, gas exchange with the surrounding atmosphere is hindered by the complete absence of stomata; hence, credible CO2 uptake measurements could not be applied in the field. The linear electron transport rates (ETRs) in ambient air were similar in intact leaves and pericarps (i.e., when the physiological internal atmosphere of each tissue is maintained), while the leaf NPQ was significantly higher, indicating enhanced needs for harmless energy dissipation. The ETR measurements performed on leaf and pericarp discs at different CO2/O2 partial pressures in the supplied air mixture revealed that pericarps displayed significantly lower values at ambient gas levels, yet they increased by ~45% under high CO2/O2 ratios (i.e., at gas concentrations simulating the fruit's interior). Concomitantly, NPQ declined gradually in both tissues as the CO2/O2 ratio increased, yet the decrease was more pronounced in pericarps. Furthermore, net CO2 assimilation rates for both leaf and pericarp segments were low in ambient air and increased almost equally at high CO2, while pericarps exhibited significantly higher respiration. It is suggested that during summer, when leaves suffer from photoinhibition, acorns could contribute to the overall carbon balance, through the re-assimilation of respiratory CO2, thereby reducing the reproductive cost.
RESUMO
The photosynthetic differences between adult and juvenile Mediterranean plants were previously studied under field conditions, yet the corresponding differentiation of their photoprotective efficiency has not been sufficiently investigated. The present study aims to examine possible differences in the photoprotective potential between adults and juveniles of two native Mediterranean plants with distinct growth forms. Thus, the seasonal variations in individual carotenoids, electron transport rate (ETR), and non-photochemical quenching (NPQ) were monitored in fully exposed mature leaves from adults and juveniles of the winter deciduous tree Cercis siliquastrum L. and the evergreen sclerophyllous shrub Nerium oleander L. All plants were grown under apparently similar field conditions. In both species, juveniles displayed substantially lower ETR and increased NPQ values than adults in spring, with the differences intensifying during summer drought and diminishing in autumn. Concomitantly, juveniles showed significantly higher chlorophyll-based total carotenoids in spring and summer mainly due to the higher investment in xanthophyll cycle components (VAZ), in combination with an increased mid-day de-epoxidation state (DEPS) and partial retention of zeaxanthin in the dark. In N. oleander, although ETR was lower in juveniles during winter, NPQ was extremely low in both ages. In conclusion, juveniles exhibit enhanced photoprotection potential, especially in the summer, due to their reduced photochemical capacity. The photosynthetic superiority of adults during the favorable spring period may be attributed to the needs of the co-existing reproductive effort.
RESUMO
This study investigated the phytochemical profile of Drimia numidica leaf methanolic extract, as well as its cyto-genotoxic and cyto/genoprotective potential against mitomycin C (MMC) mediated effects on healthy human lymphocytes. Photosynthetic pigments, trace elements, and secondary metabolites were estimated and/or identified in methanolic extract of mature leaves, and the latter was further used for assessing its in vitro biological effects on MMC-free and/or MMC-treated human lymphocytes (at low, non-toxic concentrations of 0.001 and 0.01% v/v). The results showed that D. numidica leaf methanolic extract, being rich in carotenoids, phenolics, flavonoids, organic acids and bufadienolides, could be protective against MMC mediated cyto/genotoxic potential in healthy human lymphocytes. Biomolecules possessing antioxidant and antitumor potential, such as beta-carotene and lutein among others, chlorogenic acid, caffeic acid and their derivatives, minerals such as Si, as well as apigenin- and luteolin-derived glycosides, either individual or in a mixture, could be beneficial rather than harmful, at least at the extract concentrations tested. Although further in vitro and in vivo studies are still needed for elucidating the beneficial (individual and/or additive/synergistic) role of those compounds, the results of the present study are quite promising, thus encouraging new challenges for the appropriate utilization of D. numidica leaf extract.
Assuntos
Drimia , Mitomicina , Humanos , Mitomicina/toxicidade , Drimia/química , Extratos Vegetais/farmacologia , Dano ao DNA , Linfócitos , Folhas de PlantaRESUMO
The massive decline in biodiversity due to anthropogenic threats has led to the emergence of conservation as one of the central goals in modern biology. Conservation strategies are urgently needed for addressing the ongoing loss of plant diversity. The Mediterranean basin, and especially the Mediterranean islands, host numerous rare and threatened plants in need of urgent conservation actions. In this study, we assess the current conservation status of Micromeria browiczii, a local endemic to Zakynthos Island (Ionian Islands, Greece), and estimate its future risk of extinction by compiling and assessing scientific information on geographical distribution, population dynamics and reproductive biology. The population size and the geographical distribution of the species were monitored for five years. The current population of the species consists of 15 subpopulations. Considerable annual fluctuation of population size was detected. The species is assessed as Endangered according to the International Union for Conservation of Nature threat categories. According to population viability analysis results, its extinction risk was estimated to be 5.6% over the next 50 years, when six of the fifteen subpopulations (40%) might become extinct. The investigation of certain aspects of the species' biology yielded important data necessary to identify critical aspects for its survival and to propose conservation measures.
RESUMO
Photosynthesis in host plants is significantly reduced by many virus families. The early detection of viral infection before the onset of visual symptoms in both directly and systemically infected leaves is critical in crop protection. Viral pathogens cause a variety of symptoms through modifications of chloroplast structure and function and the response of the photochemistry process is immediate. Therefore, chlorophyll fluorescence monitoring has been extensively investigated the last two decades as a tool for timely assessment of pathogenic threats. Alternatively, the analysis of Chla fluorescence transients offers several interlinked parameters which describe the fate of excitation energy round and through the photosystems. Additionally, OJIP fluorescence transients and leaf reflectance spectra methodologies serve for rapid screening of large number of samples. The objective of the present study was to achieve early detection of viral infection, integrating the multiparametric information of the Chla fluorescence transients and of the leaf reflectance spectra into one photochemical performance index. Infection decreased the maximum quantum yield of PSII (FV/FM), the effective quantum yield of PSII (ΦPSII), the CO2 assimilation rate (A) and the stomatal conductance (gs) in the studied TMV-pepper plant pathosystem, while non-photochemical quenching (NPQ) increased. Some parameters from the OJIP transients and the leaf reflectance spectra were significantly affected 24 h after infection, while others modified three to five days later. Similar results were obtained from systemically infected leaves but with one to three days hysteresis compared to inoculated leaves. Differences between healthy and infected leaves were marginal during the first 24 h post infection. The Integrated Biomarker Response tool was used to create a photochemical infection index (PINFI) which integrates the partial effects of infection on each fluorescence and reflectance index. The PINFI, which to the best of our knowledge is the first photochemical infection index created by the IBR method, discriminated reliably between the infected and healthy leaves of pepper plants from the first 24 h after infection with the TMV.