Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 10(9): 1647-1661, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37501362

RESUMO

OBJECTIVES: To explore filtered diffusion-weighted imaging (fDWI), in comparison with conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), as a predictor for long-term locomotor and urodynamic (UD) outcomes in Yucatan minipig model of spinal cord injury (SCI). Additionally, electrical conductivity of neural tissue using D-waves above and below the injury was measured to assess correlations between fDWI and D-waves data. METHODS: Eleven minipigs with contusion SCI at T8-T10 level underwent MRI at 3T 4 h. post-SCI. Parameters extracted from region of interest analysis included Daxial from fDWI at injury site, fractional anisotropy and radial diffusivity from DTI above the injury site along with measures of edema length and cord width at injury site from T2 -weighted images. Locomotor recovery was assessed pre- and weekly post-SCI through porcine thoracic injury behavior scale (PTIBS) and UD were performed pre- and at 12 weeks of SCI. D-waves latency and amplitude differences were recorded before and immediately after SCI. RESULTS: Two groups of pigs were found based on the PTIBS at week 12 (p < 0.0001) post-SCI and were labeled "poor" and "good" recovery. D-waves amplitude decreased below injury and increased above injury. UD outcomes pre/post SCI changed significantly. Conventional MRI metrics from T2 -weighted images were significantly correlated with diffusion MRI metrics. Daxial at injury epicenter was diminished by over 50% shortly after SCI, and it differentiated between good and poor locomotor recovery and UD outcomes. INTERPRETATION: Similar to small animal studies, fDWI from acute imaging after SCI is a promising predictor for functional outcomes in large animals.


Assuntos
Contusões , Traumatismos da Medula Espinal , Animais , Suínos , Imagem de Tensor de Difusão/métodos , Porco Miniatura , Imagem de Difusão por Ressonância Magnética/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem
2.
J Vis Exp ; (77)2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23912611

RESUMO

During breathing, activation of respiratory muscles is coordinated by integrated input from the brain, brainstem, and spinal cord. When this coordination is disrupted by spinal cord injury (SCI), control of respiratory muscles innervated below the injury level is compromised leading to respiratory muscle dysfunction and pulmonary complications. These conditions are among the leading causes of death in patients with SCI. Standard pulmonary function tests that assess respiratory motor function include spirometrical and maximum airway pressure outcomes: Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Maximal Inspiratory Pressure (PImax) and Maximal Expiratory Pressure (PEmax). These values provide indirect measurements of respiratory muscle performance(6). In clinical practice and research, a surface electromyography (sEMG) recorded from respiratory muscles can be used to assess respiratory motor function and help to diagnose neuromuscular pathology. However, variability in the sEMG amplitude inhibits efforts to develop objective and direct measures of respiratory motor function. Based on a multi-muscle sEMG approach to characterize motor control of limb muscles, known as the voluntary response index (VRI), we developed an analytical tool to characterize respiratory motor control directly from sEMG data recorded from multiple respiratory muscles during the voluntary respiratory tasks. We have termed this the Respiratory Motor Control Assessment (RMCA). This vector analysis method quantifies the amount and distribution of activity across muscles and presents it in the form of an index that relates the degree to which sEMG output within a test-subject resembles that from a group of healthy (non-injured) controls. The resulting index value has been shown to have high face validity, sensitivity and specificity. We showed previously that the RMCA outcomes significantly correlate with levels of SCI and pulmonary function measures. We are presenting here the method to quantitatively compare post-spinal cord injury respiratory multi-muscle activation patterns to those of healthy individuals.


Assuntos
Eletromiografia/instrumentação , Eletromiografia/métodos , Músculos Respiratórios/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Algoritmos , Humanos , Testes de Função Respiratória , Mecânica Respiratória/fisiologia , Músculos Respiratórios/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA