Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Acta Neuropathol ; 147(1): 85, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758238

RESUMO

Pituitary neuroendocrine tumors (PitNETs) exhibiting aggressive, treatment-refractory behavior are the rare subset that progress after surgery, conventional medical therapies, and an initial course of radiation and are characterized by unrelenting growth and/or metastatic dissemination. Two groups of patients with PitNETs were sequenced: a prospective group of patients (n = 66) who consented to sequencing prior to surgery and a retrospective group (n = 26) comprised of aggressive/higher risk PitNETs. A higher mutational burden and fraction of loss of heterozygosity (LOH) was found in the aggressive, treatment-refractory PitNETs compared to the benign tumors (p = 1.3 × 10-10 and p = 8.5 × 10-9, respectively). Within the corticotroph lineage, a characteristic pattern of recurrent chromosomal LOH in 12 specific chromosomes was associated with treatment-refractoriness (occurring in 11 of 14 treatment-refractory versus 1 of 14 benign corticotroph PitNETs, p = 1.7 × 10-4). Across the cohort, a higher fraction of LOH was identified in tumors with TP53 mutations (p = 3.3 × 10-8). A machine learning approach identified loss of heterozygosity as the most predictive variable for aggressive, treatment-refractory behavior, outperforming the most common gene-level alteration, TP53, with an accuracy of 0.88 (95% CI: 0.70-0.96). Aggressive, treatment-refractory PitNETs are characterized by significant aneuploidy due to widespread chromosomal LOH, most prominently in the corticotroph tumors. This LOH predicts treatment-refractoriness with high accuracy and represents a novel biomarker for this poorly defined PitNET category.


Assuntos
Perda de Heterozigosidade , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Perda de Heterozigosidade/genética , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Estudos Retrospectivos , Mutação/genética , Estudos Prospectivos
2.
J Neurooncol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896356

RESUMO

PURPOSE: A systematic review was conducted to investigate differences in incidence and primary origin of synchronous brain metastasis (sBM) in varying racial groups with different primary cancers. METHODS: Adhering to PRISMA 2020 guidelines a search was conducted using PubMed and Ovid databases for publications from January 2000 to January 2023, with search terms including combinations of "brain metastasis," "race," "ethnicity," and "incidence." Three independent reviewers screened for inclusion criteria encompassing studies clearly reporting primary cancer sites, patient demographics including race, and synchronous BM (sBM) incidence. RESULTS: Of 806 articles, 10 studies comprised of mainly adult patients from the United States met final inclusion for data analysis. Higher sBM incidence proportions were observed in American Indian/Alaska native patients for primary breast (p < 0.001), colorectal (p = 0.015), and esophageal cancers (p = 0.024) as well as in Asian or Pacific islanders for primary stomach (p < 0.001), thyroid (p = 0.006), and lung/bronchus cancers (p < 0.001) yet higher proportions in White patients for malignant melanoma (p < 0.001). Compared to White patients, Black patients had higher sBM incidence likelihood in breast cancer (OR = 1.27, p = 0.01) but lower likelihood in renal (OR = 0.46, p < 0.001) and esophageal cancers (OR = 0.31, p = 0.005). American Indian/Alaska native patients had a higher sBM likelihood (OR = 3.78, p = 0.004) relative to White patients in esophageal cancer. CONCLUSIONS: These findings reveal several comparative racial differences in sBM incidence arising from different primary cancer origins, underscoring a need for further research to explain these variations. Identifying the factors contributing to these disparities holds the potential to promote greater equity in oncological care according to cancer type.

3.
Magn Reson Med ; 89(1): 161-176, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36128892

RESUMO

PURPOSE: To develop an MR multitasking-based dynamic imaging for cerebrovascular evaluation (MT-DICE) technique for simultaneous quantification of permeability and leakage-insensitive perfusion with a single-dose contrast injection. METHODS: MT-DICE builds on a saturation-recovery prepared multi-echo fast low-angle shot sequence. The k-space is randomly sampled for 7.6 min, with single-dose contrast agent injected 1.5 min into the scan. MR multitasking is used to model the data into six dimensions, including three spatial dimensions for whole-brain coverage, a saturation-recovery time dimension, and a TE dimension for dynamic T 1 $$ {\mathrm{T}}_1 $$ and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ quantification, respectively, and a contrast dynamics dimension for capturing contrast kinetics. The derived pixel-wise T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ time series are converted into contrast concentration-time curves for calculation of kinetic metrics. The technique was assessed for its agreement with reference methods in T 1 $$ {\mathrm{T}}_1 $$ and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ measurements in eight healthy subjects and, in three of them, inter-session repeatability of permeability and leakage-insensitive perfusion parameters. Its feasibility was also demonstrated in four patients with brain tumors. RESULTS: MT-DICE T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ values of normal gray matter and white matter were in excellent agreement with reference values (intraclass correlation coefficients = 0.860/0.962 for gray matter and 0.925/0.975 for white matter ). Both permeability and perfusion parameters demonstrated good to excellent intersession agreement with the lowest intraclass correlation coefficients at 0.694. Contrast kinetic parameters in all healthy subjects and patients were within the literature range. CONCLUSION: Based on dynamic T 1 / T 2 * $$ {\mathrm{T}}_1/{\mathrm{T}}_2^{\ast } $$ mapping, MT-DICE allows for simultaneous quantification of permeability and leakage-insensitive perfusion metrics with a single-dose contrast injection.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Perfusão , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Permeabilidade
4.
Neurosurg Focus ; 55(2): E9, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527673

RESUMO

OBJECTIVE: Stereotactic radiosurgery (SRS) for operative brain metastasis (BrM) is usually administered 1 to 6 weeks after resection. Preoperative versus postoperative timing of SRS delivery related to surgery remains a critical question, as a pattern of failure is the development of leptomeningeal disease (LMD) in as many as 35% of patients who undergo postoperative SRS or the occurrence of radiation necrosis. As they await level I clinical data from ongoing trials, the authors aimed to bridge the gap by comparing postoperative with simulated preoperative single-fraction SRS dosimetry plans for patients with surgically resected BrM. METHODS: The authors queried their institutional database to retrospectively identify patients who underwent postoperative Gamma Knife SRS (GKSRS) after resection of BrM between January 2014 and January 2021. Exclusion criteria were prior radiation delivered to the lesion, age < 18 years, and prior diagnosis of LMD. Once identified, a simulated preoperative SRS plan was designed to treat the unresected BrM and compared with the standard postoperative treatment delivered to the resection cavity per Radiation Therapy Oncology Group (RTOG) 90-05 guidelines. Numerous comparisons between preoperative and postoperative GKSRS treatment parameters were then made using paired statistical analyses. RESULTS: The authors' cohort included 45 patients with a median age of 59 years who were treated with GKSRS after resection of a BrM. Primary cancer origins included colorectal cancer (27%), non-small cell lung cancer (22%), breast cancer (11%), melanoma (11%), and others (29%). The mean tumor and cavity volumes were 15.06 cm3 and 12.61 cm3, respectively. In a paired comparison, there was no significant difference in the planned treatment volumes between the two groups. When the authors compared the volume of surrounding brain that received 12 Gy or more (V12Gy), an important predictor of radiation necrosis, 64% of patient plans in the postoperative SRS group (29/45, p = 0.008) recorded greater V12 volumes. Preoperative plans were more conformal (p < 0.001) and exhibited sharper dose drop-off at the lesion margins (p = 0.0018) when compared with postoperative plans. CONCLUSIONS: Comparison of simulated preoperative and delivered postoperative SRS plans administered to the BrM or resection cavity suggested that preoperative SRS allows for more highly conformal lesional coverage and sharper dose drop-off compared with postoperative plans. Furthermore, V12Gy was lower in the presurgical GKSRS plans, which may account for the decreased incidence of radiation necrosis seen in prior retrospective studies.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Pessoa de Meia-Idade , Adolescente , Carcinoma Pulmonar de Células não Pequenas/secundário , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Neoplasias Pulmonares/cirurgia , Resultado do Tratamento , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/secundário , Necrose/etiologia , Necrose/cirurgia
5.
Neural Plast ; 2017: 3270725, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458925

RESUMO

Synaptic loss is the structural basis for memory impairment in Alzheimer's disease (AD). While the underlying pathological mechanism remains elusive, it is known that misfolded proteins accumulate as ß-amyloid (Aß) plaques and hyperphosphorylated Tau tangles decades before the onset of clinical disease. The loss of Pin1 facilitates the formation of these misfolded proteins in AD. Pin1 protein controls cell-cycle progression and determines the fate of proteins by the ubiquitin proteasome system. The activity of the ubiquitin proteasome system directly affects the functional and structural plasticity of the synapse. We localized Pin1 to dendritic rafts and postsynaptic density (PSD) and found the pathological loss of Pin1 within the synapses of AD brain cortical tissues. The loss of Pin1 activity may alter the ubiquitin-regulated modification of PSD proteins and decrease levels of Shank protein, resulting in aberrant synaptic structure. The loss of Pin1 activity, induced by oxidative stress, may also render neurons more susceptible to the toxicity of oligomers of Aß and to excitation, thereby inhibiting NMDA receptor-mediated synaptic plasticity and exacerbating NMDA receptor-mediated synaptic degeneration. These results suggest that loss of Pin1 activity could lead to the loss of synaptic plasticity in the development of AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Plasticidade Neuronal , Densidade Pós-Sináptica/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Densidade Pós-Sináptica/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitina/metabolismo , Proteínas tau/metabolismo
6.
Neurooncol Adv ; 6(1): vdae046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665799

RESUMO

Background: Glioblastoma exhibits aggressive growth and poor outcomes despite treatment, and its marked variability renders therapeutic design and prognostication challenging. The Oncology Research Information Exchange Network (ORIEN) database contains complementary clinical, genomic, and transcriptomic profiling of 206 glioblastoma patients, providing opportunities to identify novel associations between molecular features and clinical outcomes. Methods: Survival analyses were performed using the Logrank test, and clinical features were evaluated using Wilcoxon and chi-squared tests with q-values derived via Benjamini-Hochberg correction. Mutational analyses utilized sample-level enrichments from whole exome sequencing data, and statistical tests were performed using the one-sided Fisher Exact test with Benjamini-Hochberg correction. Transcriptomic analyses utilized a student's t-test with Benjamini-Hochberg correction. Expression fold changes were processed with Ingenuity Pathway Analysis to determine pathway-level alterations between groups. Results: Key findings include an association of MUC17, SYNE1, and TENM1 mutations with prolonged overall survival (OS); decreased OS associated with higher epithelial growth factor receptor (EGFR) mRNA expression, but not with EGFR amplification or mutation; a 14-transcript signature associated with OS > 2 years; and 2 transcripts associated with OS < 1 year. Conclusions: Herein, we report the first clinical, genomic, and transcriptomic analysis of ORIEN glioblastoma cases, incorporating sample reclassification under updated 2021 diagnostic criteria. These findings create multiple avenues for further investigation and reinforce the value of multi-institutional consortia such as ORIEN in deepening our knowledge of intractable diseases such as glioblastoma.

7.
J Clin Neurosci ; 117: 20-26, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740998

RESUMO

BACKGROUND: The COVID-19 pandemic caused significant disruptions to healthcare systems around the world, due to both high resource utilization and concern for disease spread. Delays in non-emergent surgeries have also affected chronic disease management, including that of benign brain tumors such as meningiomas and pituitary adenomas. To evaluate the effect of COVID-19 infection on benign brain tumor resection rates and subsequent perioperative and inpatient outcomes, this study utilized the 2020 National Inpatient Sample (NIS) to investigate rates of surgical resection, time to surgery, and mortality among benign brain tumor patients with and without COVID-19. METHODS: Patient data from April 2020 to December 2020 was extracted from the NIS. Confirmed COVID-19 diagnosis was identified using the ICD-10 diagnosis code U07.1. Patients with benign neoplasms of the cerebral meninges, cranial nerves, pituitary gland, craniopharyngeal duct, and brain were included in the study. Patient socio-demographics, hospital characteristics, and clinical comorbidities were obtained. Outcome variables included rates of surgical resection, time to surgery, in-hospital mortality, length of stay, and discharge disposition. RESULTS: The study analysis consisted of 13,053 patients with benign intracranial neoplasms who met inclusion criteria; 597 (4.6%) patients were COVID-19 positive. Patients with COVID-19 were more likely to be older and male than COVID-19 negative patients. Patients with COVID-19 had increased overall likelihood of mortality (OR 2.36, 95% CI 1.72-3.25, p < 0.0001). Even when controlling for sociodemographic/hospital factors and comorbidities, COVID-19 positive patients had a significantly longer time to surgery (8.7 days vs. 0.9 days, p < 0.0001) than COVID negative patients, and were associated with a decreased likelihood of undergoing surgery on index admission overall (OR 0.17, 95% CI 0.10-0.29, p < 0.0001). CONCLUSIONS: As expected, COVID-19 infection was associated with worse inpatient outcomes in effectively all measured categories, including longer time to surgery, decreased likelihood of receiving surgery on index admission, and increased likelihood of in-hospital mortality. These findings emphasize the effect that COVID-19 has on other aspects of patient care and highlight the importance of appropriate avenues of care for patients who are COVID-19 positive. Although the COVID-19 pandemic is no longer a public health emergency, understanding the pandemic's impact on outcome for these patients is essential in efficient triage and optimizing treatment for these patients in the future. Further study is needed to elucidate causal relationships on the outcomes of benign brain tumor patients.


Assuntos
Neoplasias Encefálicas , COVID-19 , Neoplasias Meníngeas , Humanos , Masculino , COVID-19/epidemiologia , Pandemias , Teste para COVID-19 , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/cirurgia , Estudos Retrospectivos
8.
Surg Neurol Int ; 14: 292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680935

RESUMO

Background: The global coronavirus disease-19 (COVID-19) pandemic has resulted in procedural delays around the world; however, timely and aggressive surgical resection for malignant brain tumor patients is essential for outcome optimization. To investigate the association between COVID-19 and outcomes of these patients, we queried the 2020 National Inpatient Sample (NIS) for differences in rates of surgical resection, time to surgery, mortality, and discharge disposition between patients with and without confirmed COVID-19 infection. Methods: Patient data were taken from the NIS from April 2020 to December 2020. COVID-19 diagnosis was determined with the International Classification of Diseases, Tenth Revision, Clinical Modification code U07.1. Results: A total of 30,671 malignant brain tumor patients met inclusion criteria and 738 (2.4%) patients had a confirmed COVID-19 diagnosis. COVID-19-positive patients had lower likelihood of receiving surgery (Odds ratio [OR] 0.43, 95% confidence interval [CI] 0.29-0.63, P < 0.0001), increased likelihood of mortality (OR 2.18, 95% CI 1.78-2.66, P < 0.0001), and increased likelihood of non-routine discharge (OR 1.25, 95% CI 1.13-1.39, P < 0.0001). Notably, COVID patients receiving surgery were not associated with surgical delay (P = 0.17). Conclusion: COVID-19 infection was associated with worse patient outcome in malignant brain tumor patients, including decreased likelihood of receiving surgery, increased likelihood of mortality, and increased likelihood of non-routine discharge. Our study highlights the need to balance the risks and benefits of delaying surgery for malignant brain tumor patients with COVID-19. Although the COVID-19 pandemic is no longer a public health emergency, understanding the pandemic's impact on outcome provides important insight in effective triage for these patients in the situations where resources are limited.

9.
NPJ Precis Oncol ; 7(1): 120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964004

RESUMO

Melanoma brain metastases (MBM) are clinically challenging to treat and exhibit variable responses to immune checkpoint therapies. Prior research suggests that MBM exhibit poor tumor immune responses and are enriched in oxidative phosphorylation. Here, we report results from a multi-omic analysis of a large, real-world melanoma cohort. MBM exhibited lower interferon-gamma (IFNγ) scores and T cell-inflamed scores compared to primary cutaneous melanoma (PCM) or extracranial metastases (ECM), which was independent of tumor mutational burden. Among MBM, there were fewer computationally inferred immune cell infiltrates, which correlated with lower TNF and IL12B mRNA levels. Ingenuity pathway analysis (IPA) revealed suppression of inflammatory responses and dendritic cell maturation pathways. MBM also demonstrated a higher frequency of pathogenic PTEN mutations and angiogenic signaling. Oxidative phosphorylation (OXPHOS) was enriched in MBM and negatively correlated with NK cell and B cell-associated transcriptomic signatures. Modulating metabolic or angiogenic pathways in MBM may improve responses to immunotherapy in this difficult-to-treat patient subset.

10.
Cell Rep Med ; 4(5): 101025, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37137304

RESUMO

Therapy-resistant cancer stem cells (CSCs) contribute to the poor clinical outcomes of patients with recurrent glioblastoma (rGBM) who fail standard of care (SOC) therapy. ChemoID is a clinically validated assay for identifying CSC-targeted cytotoxic therapies in solid tumors. In a randomized clinical trial (NCT03632135), the ChemoID assay, a personalized approach for selecting the most effective treatment from FDA-approved chemotherapies, improves the survival of patients with rGBM (2016 WHO classification) over physician-chosen chemotherapy. In the ChemoID assay-guided group, median survival is 12.5 months (95% confidence interval [CI], 10.2-14.7) compared with 9 months (95% CI, 4.2-13.8) in the physician-choice group (p = 0.010) as per interim efficacy analysis. The ChemoID assay-guided group has a significantly lower risk of death (hazard ratio [HR] = 0.44; 95% CI, 0.24-0.81; p = 0.008). Results of this study offer a promising way to provide more affordable treatment for patients with rGBM in lower socioeconomic groups in the US and around the world.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Antineoplásicos/uso terapêutico , Resultado do Tratamento , Células-Tronco Neoplásicas
11.
Front Oncol ; 13: 1156843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799462

RESUMO

Introduction: 1.5 Tesla (1.5T) remain a significant field strength for brain imaging worldwide. Recent computer simulations and clinical studies at 3T MRI have suggested that dynamic susceptibility contrast (DSC) MRI using a 30° flip angle ("low-FA") with model-based leakage correction and no gadolinium-based contrast agent (GBCA) preload provides equivalent relative cerebral blood volume (rCBV) measurements to the reference-standard acquisition using a single-dose GBCA preload with a 60° flip angle ("intermediate-FA") and model-based leakage correction. However, it remains unclear whether this holds true at 1.5T. The purpose of this study was to test this at 1.5T in human high-grade glioma (HGG) patients. Methods: This was a single-institution cross-sectional study of patients who had undergone 1.5T MRI for HGG. DSC-MRI consisted of gradient-echo echo-planar imaging (GRE-EPI) with a low-FA without preload (30°/P-); this then subsequently served as a preload for the standard intermediate-FA acquisition (60°/P+). Both normalized (nrCBV) and standardized relative cerebral blood volumes (srCBV) were calculated using model-based leakage correction (C+) with IBNeuro™ software. Whole-enhancing lesion mean and median nrCBV and srCBV from the low- and intermediate-FA methods were compared using the Pearson's, Spearman's and intraclass correlation coefficients (ICC). Results: Twenty-three HGG patients composing a total of 31 scans were analyzed. The Pearson and Spearman correlations and ICCs between the 30°/P-/C+ and 60°/P+/C+ acquisitions demonstrated high correlations for both mean and median nrCBV and srCBV. Conclusion: Our study provides preliminary evidence that for HGG patients at 1.5T MRI, a low FA, no preload DSC-MRI acquisition can be an appealing alternative to the reference standard higher FA acquisition that utilizes a preload.

12.
Neurooncol Adv ; 4(1): vdac119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105389

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor, with an estimated annual incidence of 17 000 new cases in the United States. Current treatments for GBM include chemotherapy, surgical resection, radiation therapy, and antiangiogenic therapy. However, despite the various therapeutic options, the 5-year survival rate remains at a dismal 5%. Temozolomide (TMZ) is the first-line chemotherapy drug for GBM; however, poor TMZ response is one of the main contributors to the dismal prognosis. Long non-coding RNAs (lncRNAs) are nonprotein coding transcripts greater than 200 nucleotides that have been implicated to mediate various GBM pathologies, including chemoresistance. In this review, we aim to frame the TMZ response in GBM via exploration of the lncRNAs mediating three major mechanisms of TMZ resistance: (1) regulation of the DNA damage response, (2) maintenance of glioma stem cell identity, and (3) exploitation of hypoxia-associated responses.

13.
Neurooncol Adv ; 4(1): vdac132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199973

RESUMO

Background: The abscopal effect is a rare phenomenon whereby local radiation induces a proposed immune-mediated anti-tumor effect at distant sites. Given the growing use of immunotherapies and systemic immune checkpoint inhibitors in neuro-oncologic practice, we aimed to review prior studies pertaining to this phenomenon in the context of tumor shrinkage both within the central nervous system as well as distant disease sites. Methods: A systematic review in accordance with the PRISMA guidelines was conducted to identify all studies which assessed the abscopal effect in patients with treated metastatic cancer to the brain and/or spine. Articles were included if they reported the abscopal effect in patients (case studies) or if the abscopal effect was explicitly analyzed in case series with cohorts of patients with metastatic brain or spine tumors. Laboratory investigations and clinical trials investigating new therapies were excluded. Results: Twenty reports met inclusion criteria [16 case reports, 4 case series (n = 160), total n = 174]. Case reports of the abscopal effect were in relation to the following cancers: melanoma (6 patients), breast cancer (3), lung adenocarcinoma (2), non-small-cell lung cancer (2), hepatocellular carcinoma (1), and renal cell carcinoma (1). Eleven patients had irradiation to the brain and 2 to the spine. Patients undergoing whole brain radiotherapy (6) had an average dose of 33.6 Gy over 8-15 fractions, and those undergoing stereotactic radiosurgery (5) had an average dose of 21.5 Gy over 1-5 fractions. One patient had radiation to the body and an intracranial abscopal effect was observed. Most common sites of extracranial tumor reduction were lung and lymph nodes. Ten case studies (57%) showed complete resolution of extra-CNS tumor burden. Median progression-free survival was 13 months following radiation. Four papers investigated incidence of abscopal effects in patients with metastatic melanoma to the brain who received immune checkpoint inhibitor therapy (n = 160); two papers found an abscopal effect in 35% and 52% of patients (n = 16, 21 respectively), and two papers found no evidence of abscopal effects (n = 61, 62). Conclusions: Abscopal effects can occur following radiotherapy in patients with brain or spine metastases and is thought to be a result of increased anti-tumor immunity. The potential for immune checkpoint inhibitor therapy to be used in combination with radiotherapy to induce an abscopal effect is an area of active investigation.

14.
J Biol Chem ; 285(39): 30050-60, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20656688

RESUMO

The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG_6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG_6394, solved to 2.9 Å resolution, revealed an α/ß hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG_6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.


Assuntos
Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Lactonas/química , Lipase/química , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Corynebacterium glutamicum/enzimologia , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Lactonas/farmacologia , Lipase/antagonistas & inibidores , Lipase/metabolismo , Orlistate , Estrutura Terciária de Proteína
15.
World Neurosurg ; 151: e682-e692, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940275

RESUMO

INTRODUCTION: Complementary and alternative medicine (CAM) are highly used among those diagnosed with glioma. Further research is warranted, however, as it remains important to clearly delineate CAM practices that are unproven, disproven, or promising for future research and implementation. METHODS: A systematic review was conducted to identify all articles that investigated the effect of any CAM therapy on survival of patients with newly diagnosed or recurrent glioma. RESULTS: Eighteen papers and 4 abstracts pertaining to the effects of ketogenic diet (4), antioxidants (3), hyperbaric oxygen (4), cannabinoids (2), carbogen and nicotinamide (3), mistletoe extract (2), hypocupremia and penicillamine (1), and overall CAM use (3) on overall and progression-free survival in patients with low- and high-grade glioma were identified (Levels of Evidence I-IV). Ketogenic diets, hyperbaric oxygen therapy, and cannabinoids appear to be safe and well tolerated by patients; preliminary studies demonstrate tumor response and increased progression-free survival and overall survival when combined with standard of care therapies. Antioxidant usage exhibit mixed results perhaps associated with glioma grade with greater effect on low-grade gliomas; vitamin D intake was associated with prolonged survival. Conversely, carbogen breathing and hypocupremia were found to have no effect on the survival of patients with glioma, with associated significant toxicity. Most modalities under the CAM umbrella have not been appropriately studied and require further investigation. CONCLUSIONS: Despite widespread use, Level I or II evidence for CAM for the treatment of glioma is lacking, representing future research directions to optimally counsel and treat glioma patients.


Assuntos
Neoplasias Encefálicas/terapia , Terapias Complementares/métodos , Glioma/terapia , Terapias Complementares/efeitos adversos , Humanos , Resultado do Tratamento
16.
Curr Protoc ; 1(6): e140, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34170630

RESUMO

Patient-derived cells from surgical resections are of paramount importance to brain tumor research. It is well known that there is cellular and microenvironmental heterogeneity within a single tumor mass. Thus, current established protocols for propagating tumor cells in vitro are limiting because resections obtained from conventional singular samples limit the diversity in cell populations and do not accurately model the heterogeneous tumor. Utilization of discarded tissue obtained from cavitron ultrasonic surgical aspirator (CUSA) of the whole tumor mass allows for establishing novel cell lines in vitro from the entirety of the tumor, thereby creating an accurate representation of the heterogeneous population of cells originally present in the tumor. Furthermore, while others have described protocols for establishing patient tumor lines once tissue has arrived in the research lab, a primer from the operating room (OR) to the research lab has not been described before. This is integral, as basic research scientists need to understand the surgical environment of the OR, including the methods utilized to obtain a patient's tumor resection, in order to more accurately model cancer biology in laboratory. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Establishment of brain tumor cell lines from patient-derived CUSA samples: processing brain tumor sample from the OR to the lab Support Protocol 1: Sterilization of microsurgical tools in preparation for dissection Support Protocol 2: Collagen coating of tissue culture flasks Basic Protocol 2: Selection of tumor cells in vitro Support Protocol 3: FACS sorting tumor sample to isolate cancer cells from heterogeneous cell population.


Assuntos
Neoplasias Encefálicas , Terapia por Ultrassom , Humanos , Laboratórios , Salas Cirúrgicas , Ultrassom
17.
Nat Commun ; 12(1): 4031, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188042

RESUMO

The response of patients with recurrent glioblastoma multiforme to neoadjuvant immune checkpoint blockade has been challenging to interpret due to the inter-patient and intra-tumor heterogeneity. We report on a comparative analysis of tumor tissues collected from patients with recurrent glioblastoma and high-risk melanoma, both treated with neoadjuvant checkpoint blockade. We develop a framework that uses multiplex spatial protein profiling, machine learning-based image analysis, and data-driven computational models to investigate the pathophysiological and molecular factors within the tumor microenvironment that influence treatment response. Using melanoma to guide the interpretation of glioblastoma analyses, we interrogate the protein expression in microscopic compartments of tumors, and determine the correlates of cytotoxic CD8+ T cells, tumor growth, treatment response, and immune cell-cell interaction. This work reveals similarities shared between glioblastoma and melanoma, immunosuppressive factors that are unique to the glioblastoma microenvironment, and potential co-targets for enhancing the efficacy of neoadjuvant immune checkpoint blockade.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Antígeno CTLA-4/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Glioblastoma/patologia , Humanos , Ipilimumab/uso terapêutico , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Nivolumabe/uso terapêutico , Resultado do Tratamento , Microambiente Tumoral/imunologia
18.
Neurooncol Adv ; 3(1): vdab005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604574

RESUMO

BACKGROUND: Better treatments for glioblastoma (GBM) patients, in particular in the recurrent setting, are urgently needed. Clinical trials performed in Brazil indicated that intranasal delivery of perillyl alcohol (POH) might be effective in this patient group. NEO100, a highly purified version of POH, was current good manufacturing practice (cGMP) manufactured to evaluate the safety and efficacy of this novel approach in a Phase I/IIa clinical trial in the United States. METHODS: A total of 12 patients with recurrent GBM were enrolled into Phase I of this trial. NEO100 was administered by intranasal delivery using a nebulizer and nasal mask. Dosing was 4 times a day, every day. Four cohorts of 3 patients received the following dosages: 96 mg/dose (384 mg/day), 144 mg/dose (576 mg/day), 192 mg/dose (768 mg/day), and 288 mg/dose (1152 mg/day). Completion of 28 days of treatment was recorded as 1 cycle. Adverse events were documented, and radiographic response via Response Assessment in Neuro-Oncology (RANO) criteria was evaluated every 2 months. Progression-free and overall survival were determined after 6 and 12 months, respectively (progression-free survival-6 [PFS-6], overall survival-12 [OS-12]). RESULTS: Intranasal NEO100 was well tolerated at all dose levels and no severe adverse events were reported. PFS-6 was 33%, OS-12 was 55%, and median OS was 15 months. Four patients (33%), all of them with isocitrate dehydrogenase 1 (IDH1)-mutant tumors, survived >24 months. CONCLUSION: Intranasal glioma therapy with NEO100 was well tolerated. It correlated with improved survival when compared to historical controls, pointing to the possibility that this novel intranasal approach could become useful for the treatment of recurrent GBM.

19.
Surg Oncol ; 37: 101533, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33601294

RESUMO

OBJECTIVE: To characterize the rates of depression across primary cancer sites, and determine the effects of comorbid depression among surgical cancer patients on established quality of care indicators, non-routine discharge and readmission. METHODS: Patients undergoing surgical resection for cancer were selected from the Nationwide Readmissions Database (2010-2014). Multivariable analysis adjusted for patient and hospital level characteristics to ascertain the effect of depression on post-operative outcomes and 30-day readmission rates. Non-routine discharge encompasses discharge to skilled nursing, inpatient rehabilitation, and intermediate care facilities, as well as discharge home with home health services. RESULTS: Among 851,606 surgically treated cancer patients, 8.1% had a comorbid diagnosis of depression at index admission (n = 69,174). Prevalence of depression was highest among patients with cancer of the brain (10.9%), female genital organs (10.9%), and lung (10.5%), and lowest among those with prostate cancer (4.9%). Depression prevalence among women (10.9%) was almost twice that of men (5.7%). Depression was associated with non-routine discharge after surgery (OR 1.20, CI:1.18-1.23, p < 0.0001*) and hospital readmission within 30 days (OR 1.12, CI:1.09-1.15, p < 0.001*). CONCLUSION: Rates of depression vary amongst surgically treated cancer patients by primary tumor site. Comorbid depression in these patients is associated with increased likelihood of non-routine discharge and readmission.


Assuntos
Transtorno Depressivo/epidemiologia , Neoplasias/psicologia , Neoplasias/cirurgia , Alta do Paciente/estatística & dados numéricos , Readmissão do Paciente/estatística & dados numéricos , Adulto , Idoso , Bases de Dados Factuais , Transtorno Depressivo/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Avaliação de Resultados em Cuidados de Saúde , Prevalência , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais
20.
Nat Commun ; 12(1): 6938, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836966

RESUMO

Primary brain tumors, such as glioblastoma (GBM), are remarkably resistant to immunotherapy, even though pre-clinical models suggest effectiveness. To understand this better in patients, here we take advantage of our recent neoadjuvant treatment paradigm to map the infiltrating immune cell landscape of GBM and how this is altered following PD-1 checkpoint blockade using high dimensional proteomics, single cell transcriptomics, and quantitative multiplex immunofluorescence. Neoadjuvant PD-1 blockade increases T cell infiltration and the proportion of a progenitor exhausted population of T cells found within the tumor. We identify an early activated and clonally expanded CD8+ T cell cluster whose TCR overlaps with a CD8+ PBMC population. Distinct changes are also observed in conventional type 1 dendritic cells that may facilitate T cell recruitment. Macrophages and monocytes still constitute the majority of infiltrating immune cells, even after anti-PD-1 therapy. Interferon-mediated changes in the myeloid population are consistently observed following PD-1 blockade; these also mediate an increase in chemotactic factors that recruit T cells. However, sustained high expression of T-cell-suppressive checkpoints in these myeloid cells continue to prevent the optimal activation of the tumor infiltrating T cells. Therefore, future immunotherapeutic strategies may need to incorporate the targeting of these cells for clinical benefit.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/terapia , Inibidores de Checkpoint Imunológico/farmacologia , Terapia Neoadjuvante/métodos , Recidiva Local de Neoplasia/terapia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Procedimentos Neurocirúrgicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , RNA-Seq , Análise de Célula Única , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Evasão Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA