Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(2): e2214634120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595679

RESUMO

The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N = 351) and Alzheimer's disease (AD, N = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Adulto , Humanos , Disfunção Cognitiva/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos
2.
Cortex ; 171: 397-412, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103453

RESUMO

A considerable but ill-defined proportion of patients with mild traumatic brain injury (mTBI) experience persistent cognitive sequelae; the ability to identify such individuals early can help their neurorehabilitation. Here we tested the hypothesis that acute measures of efficient communication within brain networks are associated with patients' risk for unfavorable cognitive outcome six months after mTBI. Diffusion and T1-weighted magnetic resonance imaging, alongside cognitive measures, were obtained to map connectomes both one week and six months post injury in 113 adult patients with mTBI (71 males). For task-related brain networks, communication measures (characteristic path length, global efficiency, navigation efficiency) were moderately correlated with changes in cognition. Taking into account the covariance of age and sex, more unfavorable communication within networks were associated with worse outcomes within cognitive domains frequently impacted by mTBI (episodic and working memory, verbal fluency, inductive reasoning, and processing speed). Individuals with more unfavorable outcomes had significantly longer and less efficient pathways within networks supporting verbal fluency (all t > 2.786, p < .006), highlighting the vulnerability of language to mTBI. Participants in whom a task-related network was relatively inefficient one week post injury were up to eight times more likely to have unfavorable cognitive outcome pertaining to that task. Our findings suggest that communication measures within task-related networks identify mTBI patients who are unlikely to develop persistent cognitive deficits after mTBI. Our approach and findings can help to stratify mTBI patients according to their expected need for follow-up and/or neurorehabilitation.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Adulto , Masculino , Humanos , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Lesões Encefálicas/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Idioma , Cognição
3.
J Neurotrauma ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482793

RESUMO

Accurate early diagnosis of concussion is useful to prevent sequelae and improve neurocognitive outcomes. Early after head impact, concussion diagnosis may be doubtful in persons whose neurological, neuroradiological, and/or neurocognitive examinations are equivocal. Such individuals can benefit from novel accurate assessments that complement clinical diagnostics. We introduce a Bayesian machine learning classifier to identify concussion through cortico-cortical connectome mapping from magnetic resonance imaging in persons with quasi-normal cognition and without neuroradiological findings. Classifier features are generated from connectivity matrices specifying the mean fractional anisotropy of white matter connections linking brain structures. Each connection's saliency to classification was quantified by training individual classifier instantiations using a single feature type. The classifier was tested on a discovery sample of 92 healthy controls (HCs; 26 females, age µ ± σ: 39.8 ± 15.5 years) and 471 adult mTBI patients (158 females, age µ ± σ: 38.4 ± 5.9 years). Results were replicated in an independent validation sample of 256 HCs (149 females, age µ ± σ: 55.3 ± 12.1 years) and 126 patients with concussion (46 females, age µ ± σ: 39.0 ± 17.7 years). Classifier accuracy exceeds 99% in both samples, suggesting robust generalizability to new samples. Notably, 13 bilateral cortico-cortical connection pairs predict diagnostic status with accuracy exceeding 99% in both discovery and validation samples. Many such connection pairs are between prefrontal cortex structures, fronto-limbic and fronto-subcortical structures, and occipito-temporal structures in the ventral ("what") visual stream. This and related connectivity form a highly salient network of brain connections that is particularly vulnerable to concussion. Because these connections are important in mediating cognitive control, memory, and attention, our findings explain the high frequency of cognitive disturbances after concussion. Our classifier was trained and validated on concussed participants with cognitive profiles very similar to those of HCs. This suggests that the classifier can complement current diagnostics by providing independent information in clinical contexts where patients have quasi-normal cognition but where concussion diagnosis stands to benefit from additional evidence.

4.
Geroscience ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683289

RESUMO

Industrialized environments, despite benefits such as higher levels of formal education and lower rates of infections, can also have pernicious impacts upon brain atrophy. Partly for this reason, comparing age-related brain volume trajectories between industrialized and non-industrialized populations can help to suggest lifestyle correlates of brain health. The Tsimane, indigenous to the Bolivian Amazon, derive their subsistence from foraging and horticulture and are physically active. The Moseten, a mixed-ethnicity farming population, are physically active but less than the Tsimane. Within both populations (N = 1024; age range = 46-83), we calculated regional brain volumes from computed tomography and compared their cross-sectional trends with age to those of UK Biobank (UKBB) participants (N = 19,973; same age range). Surprisingly among Tsimane and Moseten (T/M) males, some parietal and occipital structures mediating visuospatial abilities exhibit small but significant increases in regional volume with age. UKBB males exhibit a steeper negative trend of regional volume with age in frontal and temporal structures compared to T/M males. However, T/M females exhibit significantly steeper rates of brain volume decrease with age compared to UKBB females, particularly for some cerebro-cortical structures (e.g., left subparietal cortex). Across the three populations, observed trends exhibit no interhemispheric asymmetry. In conclusion, the age-related rate of regional brain volume change may differ by lifestyle and sex. The lack of brain volume reduction with age is not known to exist in other human population, highlighting the putative role of lifestyle in constraining regional brain atrophy and promoting elements of non-industrialized lifestyle like higher physical activity.

5.
J Gerontol A Biol Sci Med Sci ; 78(6): 872-881, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183259

RESUMO

The biological age of the brain differs from its chronological age (CA) and can be used as biomarker of neural/cognitive disease processes and as predictor of mortality. Brain age (BA) is often estimated from magnetic resonance images (MRIs) using machine learning (ML) that rarely indicates how regional brain features contribute to BA. Leveraging an aggregate training sample of 3 418 healthy controls (HCs), we describe a ridge regression model that quantifies each region's contribution to BA. After model testing on an independent sample of 651 HCs, we compute the coefficient of partial determination R¯p2 for each regional brain volume to quantify its contribution to BA. Model performance is also evaluated using the correlation r between chronological and biological ages, the mean absolute error (MAE ) and mean squared error (MSE) of BA estimates. On training data, r=0.92, MSE=70.94 years, MAE=6.57 years, and R¯2=0.81; on test data, r=0.90, MSE=81.96 years, MAE=7.00 years, and R¯2=0.79. The regions whose volumes contribute most to BA are the nucleus accumbens (R¯p2=7.27%), inferior temporal gyrus (R¯p2=4.03%), thalamus (R¯p2=3.61%), brainstem (R¯p2=3.29%), posterior lateral sulcus (R¯p2=3.22%), caudate nucleus (R¯p2=3.05%), orbital gyrus (R¯p2=2.96%), and precentral gyrus (R¯p2=2.80%). Our ridge regression, although outperformed by the most sophisticated ML approaches, identifies the importance and relative contribution of each brain structure to overall BA. Aside from its interpretability and quasi-mechanistic insights, our model can be used to validate future ML approaches for BA estimation.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Biomarcadores , Córtex Pré-Frontal
6.
Front Neurol ; 13: 854396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812106

RESUMO

Despite contributing to neurocognitive deficits, intracortical demyelination after traumatic brain injury (TBI) is understudied. This study uses magnetic resonance imaging (MRI) to map intracortical myelin and its change in healthy controls and after mild TBI (mTBI). Acute mTBI involves reductions in relative myelin content primarily in lateral occipital regions. Demyelination mapped ~6 months post-injury is significantly more severe than that observed in typical aging (p < 0.05), with temporal, cingulate, and insular regions losing more myelin (30%, 20%, and 16%, respectively) than most other areas, although occipital regions experience 22% less demyelination. Thus, occipital regions may be more susceptible to primary injury, whereas temporal, cingulate and insular regions may be more susceptible to later manifestations of injury sequelae. The spatial profiles of aging- and mTBI-related chronic demyelination overlap substantially; exceptions include primary motor and somatosensory cortices, where myelin is relatively spared post-mTBI. These features resemble those of white matter demyelination and cortical thinning during Alzheimer's disease, whose risk increases after mTBI.

7.
J Gerontol A Biol Sci Med Sci ; 76(12): 2147-2155, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038540

RESUMO

Brain atrophy is correlated with risk of cognitive impairment, functional decline, and dementia. Despite a high infectious disease burden, Tsimane forager-horticulturists of Bolivia have the lowest prevalence of coronary atherosclerosis of any studied population and present few cardiovascular disease (CVD) risk factors despite a high burden of infections and therefore inflammation. This study (a) examines the statistical association between brain volume (BV) and age for Tsimane and (b) compares this association to that of 3 industrialized populations in the United States and Europe. This cohort-based panel study enrolled 746 participants aged 40-94 (396 males), from whom computed tomography (CT) head scans were acquired. BV and intracranial volume (ICV) were calculated from automatic head CT segmentations. The linear regression coefficient estimate ß^T of the Tsimane (T), describing the relationship between age (predictor) and BV (response, as a percentage of ICV), was calculated for the pooled sample (including both sexes) and for each sex. ß^T was compared to the corresponding regression coefficient estimate ß^R of samples from the industrialized reference (R) countries. For all comparisons, the null hypothesis ß T = ß R was rejected both for the combined samples of males and females, as well as separately for each sex. Our results indicate that the Tsimane exhibit a significantly slower decrease in BV with age than populations in the United States and Europe. Such reduced rates of BV decrease, together with a subsistence lifestyle and low CVD risk, may protect brain health despite considerable chronic inflammation related to infectious burden.


Assuntos
Encéfalo , Doença da Artéria Coronariana , Inflamação/etnologia , Estilo de Vida , Adulto , Idoso , Idoso de 80 Anos ou mais , Bolívia/epidemiologia , Encéfalo/diagnóstico por imagem , Doença da Artéria Coronariana/etnologia , Feminino , Humanos , Povos Indígenas , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , América do Sul/epidemiologia
8.
Geroscience ; 42(5): 1411-1429, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32743786

RESUMO

Traumatic brain injury (TBI) and Alzheimer's disease (AD) are prominent neurological conditions whose neural and cognitive commonalities are poorly understood. The extent of TBI-related neurophysiological abnormalities has been hypothesized to reflect AD-like neurodegeneration because TBI can increase vulnerability to AD. However, it remains challenging to prognosticate AD risk partly because the functional relationship between acute posttraumatic sequelae and chronic AD-like degradation remains elusive. Here, functional magnetic resonance imaging (fMRI), network theory, and machine learning (ML) are leveraged to study the extent to which geriatric mild TBI (mTBI) can lead to AD-like alteration of resting-state activity in the default mode network (DMN). This network is found to contain modules whose extent of AD-like, posttraumatic degradation can be accurately prognosticated based on the acute cognitive deficits of geriatric mTBI patients with cerebral microbleeds. Aside from establishing a predictive physiological association between geriatric mTBI, cognitive impairment, and AD-like functional degradation, these findings advance the goal of acutely forecasting mTBI patients' chronic deviations from normality along AD-like functional trajectories. The association of geriatric mTBI with AD-like changes in functional brain connectivity as early as ~6 months post-injury carries substantial implications for public health because TBI has relatively high prevalence in the elderly.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Rede de Modo Padrão , Humanos , Rede Nervosa
9.
Front Neuroinform ; 13: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936828

RESUMO

When properly implemented and processed, anatomic T 1-weighted magnetic resonance imaging (MRI) can be ideal for the noninvasive quantification of white matter (WM) and gray matter (GM) in the living human brain. Although MRI is more suitable for distinguishing GM from WM than computed tomography (CT), the growing clinical use of the latter technique has renewed interest in head CT segmentation. Such interest is particularly strong in settings where MRI is unavailable, logistically unfeasible or prohibitively expensive. Nevertheless, whereas MRI segmentation is a sophisticated and technically-mature research field, the task of automatically classifying soft brain tissues from CT remains largely unexplored. Furthermore, brain segmentation methods for MRI hold considerable potential for adaptation and application to CT image processing. Here we demonstrate this by combining probabilistic, atlas-based classification with topologically-constrained tissue boundary refinement to delineate WM, GM and cerebrospinal fluid (CSF) from head CT images. The feasibility and utility of this approach are revealed by comparison of MRI-only vs. CT-only segmentations in geriatric concussion victims with both MRI and CT scans. Comparison of the two segmentations yields mean Sørensen-Dice coefficients of 85.5 ± 4.6% (WM), 86.7 ± 5.6% (GM) and 91.3 ± 2.8% (CSF), as well as average Hausdorff distances of 3.76 ± 1.85 mm (WM), 3.43 ± 1.53 mm (GM) and 2.46 ± 1.27 mm (CSF). Bootstrapping results suggest that the segmentation approach is sensitive enough to yield WM, GM and CSF volume estimates within ~5%, ~4%, and ~3% of their MRI-based estimates, respectively. To our knowledge, this is the first 3D segmentation approach for CT to undergo rigorous within-subject comparison with high-resolution MRI. Results suggest that (1) standard-quality CT allows WM/GM/CSF segmentation with reasonable accuracy, and that (2) the task of soft brain tissue classification from CT merits further attention from neuroimaging researchers.

10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 198-203, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31945877

RESUMO

Cerebral microbleeds (CMBs), a common manifestation of mild traumatic brain injury (mTBI), have been sporadically implicated in the neurocognitive deficits of mTBI victims but their clinical significance has not been established adequately. Here we investigate the longitudinal effects of post-mTBI CMBs upon the fractional anisotropy (FA) of white matter (WM) in 21 older mTBI patients across the first ~6 months post-injury. CMBs were segmented automatically from susceptibility-weighted imaging (SWI) by leveraging the intensity gradient properties of SWI to identify CMB-related hypointensities using gradient-based edge detection. A detailed diffusion magnetic resonance imaging (dMRI) atlas of WM was used to segment and cluster tractography streamlines whose prototypes were then identified. The correlation coefficient was calculated between (A) FA values at vertices along streamline prototypes and (B) topological (along-streamline) distances between these vertices and the nearest CMB. Across subjects, the CMB identification approach achieved a sensitivity of 97.1% ± 4.7% and a precision of 72.4% ± 11.0% across subjects. The correlation coefficient was found to be negative and, additionally, statistically significant for 12.3% ± 3.5% of WM clusters (p <; 0.05, corrected), whose FA was found to decrease, on average, by 11.8% ± 5.3% across the first 6 months post-injury. These results suggest that CMBs can be associated with deleterious effects upon peri-lesional WM and highlight the vulnerability of older mTBI patients to neurovascular injury.


Assuntos
Substância Branca , Concussão Encefálica , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética
11.
ACM BCB ; 2018: 165-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687848

RESUMO

Connectomics alterations associated with subtle forms of cerebrovascular neuropathology-such as cerebral microbleeds (CMBs)-can result in substantial neurological and/or cognitive deficits in victims of traumatic brain injury (TBI). Quantifying CMB-related connectome changes in mild TBI (mTBI) patients requires ingenious neuroinformatics to integrate structural magnetic resonance imaging (sMRI) with diffusion-weighted imaging (DWI) for patient-tailored profiling while preserving the data scientist's ability to implement population studies. Such solutions, however, can assist the refinement of rehabilitation protocols and streamline large-scale analysis while accommodating the heterogeneity of mTBI. This study describes a pipeline for the multimodal integration of sMRI/DWI/DTI to quantify white matter (WM) neural network circuitry alterations associated with mTBI-related CMBs. The approach incorporates WM streamline matching, topology-compliant streamline prototyping and along-tract analysis within a unified framework. When applied to the analysis of neuroimaging data acquired from both mTBI and healthy control volunteers, the approach facilitates the identification of patient-specific CMB-related connectomic changes while incorporating the ability to perform group analyses. This pipeline for the identification and profiling of connectopathies can assist the adaptation of clinical rehabilitation protocols to patients' individual needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA