Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(16): 3045-3060.e11, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35752173

RESUMO

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas , Hormônios Tireóideos/metabolismo , Carcinoma Ductal Pancreático/genética , Humanos , Metionina , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Neoplasias Pancreáticas/genética , Piruvato Quinase/metabolismo , Proteínas de Ligação a Hormônio da Tireoide , Neoplasias Pancreáticas
2.
Nature ; 623(7985): 77-82, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914946

RESUMO

When searching for the ideal molecule to fill a particular functional role (for example, a medicine), the difference between success and failure can often come down to a single atom1. Replacing an aromatic carbon atom with a nitrogen atom would be enabling in the discovery of potential medicines2, but only indirect means exist to make such C-to-N transmutations, typically by parallel synthesis3. Here, we report a transformation that enables the direct conversion of a heteroaromatic carbon atom into a nitrogen atom, turning quinolines into quinazolines. Oxidative restructuring of the parent azaarene gives a ring-opened intermediate bearing electrophilic sites primed for ring reclosure and expulsion of a carbon-based leaving group. Such a 'sticky end' approach subverts existing atom insertion-deletion approaches and as a result avoids skeleton-rotation and substituent-perturbation pitfalls common in stepwise skeletal editing. We show a broad scope of quinolines and related azaarenes, all of which can be converted into the corresponding quinazolines by replacement of the C3 carbon with a nitrogen atom. Mechanistic experiments support the critical role of the activated intermediate and indicate a more general strategy for the development of C-to-N transmutation reactions.


Assuntos
Carbono , Técnicas de Química Sintética , Nitrogênio , Quinazolinas , Quinolinas , Carbono/química , Nitrogênio/química , Quinazolinas/síntese química , Quinazolinas/química , Quinolinas/química , Oxirredução , Desenho de Fármacos , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química
3.
Proc Natl Acad Sci U S A ; 117(11): 5733-5740, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123103

RESUMO

The field of chemical modification of proteins has been dominated by random modification of lysines or more site-specific labeling of cysteines, each with attendant challenges. Recently, we have developed oxaziridine chemistry for highly selective modification of methionine called redox-activated chemical tagging (ReACT) but have not broadly tested the molecular parameters for efficient and stable protein modification. Here we systematically scanned methionines throughout one of the most popular antibody scaffolds, trastuzumab, used for antibody engineering and drug conjugation. We tested the expression, reactivities, and stabilities of 123 single engineered methionines distributed over the surface of the antibody when reacted with oxaziridine. We found uniformly high expression for these mutants and excellent reaction efficiencies with a panel of oxaziridines. Remarkably, the stability to hydrolysis of the sulfimide varied more than 10-fold depending on temperature and the site of the engineered methionine. Interestingly, the most stable and reactive sites were those that were partially buried, presumably because of their reduced access to water. There was also a 10-fold variation in stability depending on the nature of the oxaziridine, which was determined to be inversely correlated with the electrophilic nature of the sulfimide. Importantly, the stabilities of the best analogs were sufficient to support their use as antibody drug conjugates and potent in a breast cancer mouse xenograft model over a month. These studies provide key parameters for broad application of ReACT for efficient, stable, and site-specific antibody and protein bioconjugation to native or engineered methionines.


Assuntos
Aziridinas/análise , Imunoconjugados/química , Metionina/análise , Animais , Antineoplásicos/normas , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Feminino , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Camundongos , Camundongos Nus , Engenharia de Proteínas/métodos , Estabilidade Proteica
4.
J Am Chem Soc ; 144(50): 22890-22901, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484997

RESUMO

Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.


Assuntos
Neoplasias da Mama , Metionina , Humanos , Feminino , Quinase 4 Dependente de Ciclina/metabolismo , Ligantes , Fosforilação , Oxirredução , Racemetionina/metabolismo
5.
Infect Immun ; 89(8): e0014621, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34001560

RESUMO

The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur-containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing; however, the Δmsr strain does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, the Δmsr strain is slower to recover following coculture with both murine and human neutrophils than USA300 wild type. The Δmsr strain is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wild-type and Δmsr strains have similar survival phenotypes when incubated with murine whole blood. However, the Δmsr strain is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Metionina Sulfóxido Redutases/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Peróxido de Hidrogênio/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/imunologia , Camundongos , Viabilidade Microbiana/imunologia , Mutação , Oxirredução , Estresse Oxidativo , Staphylococcus aureus/genética
6.
J Org Chem ; 86(15): 10914-10920, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34260227

RESUMO

Metallaphotoredox-catalyzed C-S cross-coupling between heteroaryl bromides and α-thioacetic acids to form biaryl thioethers is described herein. This transformation allows for cross-coupling between building blocks containing reactive functional groups, nitrogen heterocycles, and pharmaceutically relevant scaffolds. Mechanistic experiments indicate a unique means by which this C-S cross-coupling occurs.


Assuntos
Brometos , Sulfetos , Catálise , Nitrogênio
7.
Org Biomol Chem ; 19(5): 947-964, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33406177

RESUMO

This review will cover the importance of and most recent approaches toward geminal difluoroalkyl groups. Transition metal-mediated, photochemical, organocatalytic, and other methods as well as their mechanistic implications will be discussed, with special emphasis on applications to biologically-relevant compounds.

8.
J Am Chem Soc ; 141(32): 12657-12662, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31361488

RESUMO

We report a data-driven, physical organic approach to the development of new methionine-selective bioconjugation reagents with tunable adduct stabilities. Statistical modeling of structural features described by intrinsic physical organic parameters was applied to the development of a predictive model and to gain insight into features driving the stability of adducts formed from the chemoselective coupling of oxaziridine and methionine thioether partners through Redox Activated Chemical Tagging (ReACT). From these analyses, a correlation between sulfimide stabilities and sulfimide ν (C═O) stretching frequencies was revealed. We exploited the rational gains in adduct stability exposed by this analysis to achieve the design and synthesis of a bis-oxaziridine reagent for peptide stapling. Indeed, we observed that a macrocyclic peptide formed by ReACT stapling at methionine exhibited improved uptake into live cells compared to an unstapled congener, highlighting the potential utility of this unique chemical tool for thioether modification. This work provides a template for the broader use of data-driven approaches to bioconjugation chemistry and other chemical biology applications.


Assuntos
Aziridinas/química , Indicadores e Reagentes/química , Metionina/química , Sondas Moleculares/química , Peptídeos Cíclicos/química , Células HEK293 , Humanos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/metabolismo
9.
Science ; 376(6592): 527-532, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482853

RESUMO

Discovery chemists routinely identify purpose-tailored molecules through an iterative structural optimization approach, but the preparation of each successive candidate in a compound series can rarely be conducted in a manner matching their thought process. This is because many of the necessary chemical transformations required to modify compound cores in a straightforward fashion are not applicable in complex contexts. We report a method that addresses one facet of this problem by allowing chemists to hop directly between chemically distinct heteroaromatic scaffolds. Specifically, we show that selective photolysis of quinoline N-oxides with 390-nanometer light followed by acid-promoted rearrangement affords N-acylindoles while showing broad compatibility with medicinally relevant functionality. Applications to late-stage skeletal modification of compounds of pharmaceutical interest and more complex transformations involving serial single-atom changes are demonstrated.

10.
ACS Catal ; 7(6): 3973-3978, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-29686935

RESUMO

Herein, we report the integration of simple linear regressions with gold(I) catalysis to interrogate the influence of phosphine structure on metal-catalyzed organic transformations. We demonstrate that observed product ratios in [4 + 3]/[4 + 2] cycloisomerization processes are influenced by both steric and electronic properties of the phosphine, which can be represented by the Au-Cl distance. In contrast, the observed selectivity of a similar [2 + 3]/[2 + 2] cycloisomerization is governed by L/B1, a steric parameter. Using this correlation, we were able to accurately predict the selectivity of a previously untested, Buchwald-type ligand to enhance selectivity for the same transformation. This ligand found further utility in increasing the selectivity of a previously reported gold-catalyzed cycloisomerization/arylation of 1,6-enynes by ~1 kcal/mol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA