Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cell ; 187(1): 204-215.e14, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38070508

RESUMO

Mounting evidence suggests metabolism instructs stem cell fate decisions. However, how fetal metabolism changes during development and how altered maternal metabolism shapes fetal metabolism remain unexplored. We present a descriptive atlas of in vivo fetal murine metabolism during mid-to-late gestation in normal and diabetic pregnancy. Using 13C-glucose and liquid chromatography-mass spectrometry (LC-MS), we profiled the metabolism of fetal brains, hearts, livers, and placentas harvested from pregnant dams between embryonic days (E)10.5 and 18.5. Our analysis revealed metabolic features specific to a hyperglycemic environment and signatures that may denote developmental transitions during euglycemic development. We observed sorbitol accumulation in fetal tissues and altered neurotransmitter levels in fetal brains isolated from hyperglycemic dams. Tracing 13C-glucose revealed disparate fetal nutrient sourcing depending on maternal glycemic states. Regardless of glycemic state, histidine-derived metabolites accumulated in late-stage fetal tissues. Our rich dataset presents a comprehensive overview of in vivo fetal tissue metabolism and alterations due to maternal hyperglycemia.


Assuntos
Diabetes Mellitus , Diabetes Gestacional , Feto , Animais , Feminino , Camundongos , Gravidez , Diabetes Mellitus/metabolismo , Feto/metabolismo , Glucose/metabolismo , Placenta/metabolismo , Diabetes Gestacional/metabolismo
2.
Cell ; 175(1): 117-132.e21, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197082

RESUMO

The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.


Assuntos
Proteínas de Transporte/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Metabolismo dos Carboidratos/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Glicólise/fisiologia , Humanos , Ácido Hialurônico/fisiologia , Hialuronoglucosaminidase/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Tristetraprolina/metabolismo , Tristetraprolina/fisiologia
3.
Cell ; 160(3): 363-4, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635452

RESUMO

To colonize the liver, colon cancer metastases must overcome hypoxia and other metabolic stress. Loo et al. now show that metastatic cells achieve this by decreasing miR-483 and miR-551a expression, which derepresses creatine kinase expression and allows energy to be captured from extracellular ATP through generation and import of phosphocreatine.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Hepáticas/secundário , MicroRNAs/metabolismo , Metástase Neoplásica/genética , Animais , Humanos , Masculino
4.
Mol Cell ; 80(5): 762-763, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275887

RESUMO

Lactate initiates Mg2+ release from the ER and subsequent uptake by the mitochondria.


Assuntos
Ácido Láctico , Magnésio , Transporte Biológico , Ácido Láctico/metabolismo , Magnésio/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial
5.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37260407

RESUMO

Diet contributes to health at all stages of life, from embryonic development to old age. Nutrients, including vitamins, amino acids, lipids and sugars, have instructive roles in directing cell fate and function, maintaining stem cell populations, tissue homeostasis and alleviating the consequences of aging. This Review highlights recent findings that illuminate how common diets and specific nutrients impact cell fate decisions in healthy and disease contexts. We also draw attention to new models, technologies and resources that help to address outstanding questions in this emerging field and may lead to dietary approaches that promote healthy development and improve disease treatments.


Assuntos
Dieta , Nutrientes , Feminino , Gravidez , Humanos , Vitaminas , Diferenciação Celular , Envelhecimento/fisiologia
6.
Mol Cell ; 67(1): 128-138.e7, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28648777

RESUMO

Mutations in cancer reprogram amino acid metabolism to drive tumor growth, but the molecular mechanisms are not well understood. Using an unbiased proteomic screen, we identified mTORC2 as a critical regulator of amino acid metabolism in cancer via phosphorylation of the cystine-glutamate antiporter xCT. mTORC2 phosphorylates serine 26 at the cytosolic N terminus of xCT, inhibiting its activity. Genetic inhibition of mTORC2, or pharmacologic inhibition of the mammalian target of rapamycin (mTOR) kinase, promotes glutamate secretion, cystine uptake, and incorporation into glutathione, linking growth factor receptor signaling with amino acid uptake and utilization. These results identify an unanticipated mechanism regulating amino acid metabolism in cancer, enabling tumor cells to adapt to changing environmental conditions.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias Encefálicas/enzimologia , Cisteína/metabolismo , Glioblastoma/enzimologia , Glutamina/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células A549 , Sistema y+ de Transporte de Aminoácidos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Glutationa/biossíntese , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Mutação , Fosforilação , Ligação Proteica , Proteômica/métodos , Interferência de RNA , Serina , Serina-Treonina Quinases TOR/genética , Espectrometria de Massas em Tandem , Fatores de Tempo , Transfecção , Microambiente Tumoral
7.
J Lipid Res ; 65(2): 100434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37640283

RESUMO

Adipose tissue is the site of long-term energy storage. During the fasting state, exercise, and cold exposure, the white adipose tissue mobilizes energy for peripheral tissues through lipolysis. The mobilization of lipids from white adipose tissue to the liver can lead to excess triglyceride accumulation and fatty liver disease. Although the white adipose tissue is known to release free fatty acids, a comprehensive analysis of lipids mobilized from white adipocytes in vivo has not been completed. In these studies, we provide a comprehensive quantitative analysis of the adipocyte-secreted lipidome and show that there is interorgan crosstalk with liver. Our analysis identifies multiple lipid classes released by adipocytes in response to activation of lipolysis. Time-dependent analysis of the serum lipidome showed that free fatty acids increase within 30 min of ß3-adrenergic receptor activation and subsequently decrease, followed by a rise in serum triglycerides, liver triglycerides, and several ceramide species. The triglyceride composition of liver is enriched for linoleic acid despite higher concentrations of palmitate in the blood. To further validate that these findings were a specific consequence of lipolysis, we generated mice with conditional deletion of adipose tissue triglyceride lipase exclusively in adipocytes. This loss of in vivo adipocyte lipolysis prevented the rise in serum free fatty acids and hepatic triglycerides. Furthermore, conditioned media from adipocytes promotes lipid remodeling in hepatocytes with concomitant changes in genes/pathways mediating lipid utilization. Together, these data highlight critical role of adipocyte lipolysis in interorgan crosstalk between adipocytes and liver.


Assuntos
Ácidos Graxos não Esterificados , Lipólise , Camundongos , Animais , Lipólise/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Lipidômica , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161263

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that typically causes asymptomatic infection but can promote B lymphoid tumors in the immune suppressed. In vitro, EBV infection of primary B cells stimulates glycolysis during immortalization into lymphoblastoid cell lines (LCLs). Lactate export during glycolysis is crucial for continued proliferation of many cancer cells-part of a phenomenon known as the "Warburg effect"- and is mediated by monocarboxylate transporters (MCTs). However, the role of MCTs has yet to be studied in EBV-associated malignancies, which display Warburg-like metabolism in vitro. Here, we show that EBV infection of B lymphocytes directly promotes temporal induction of MCT1 and MCT4 through the viral proteins EBNA2 and LMP1, respectively. Functionally, MCT1 was required for early B cell proliferation, and MCT4 up-regulation promoted acquired resistance to MCT1 antagonism in LCLs. However, dual MCT1/4 inhibition led to LCL growth arrest and lactate buildup. Metabolic profiling in LCLs revealed significantly reduced oxygen consumption rates (OCRs) and NAD+/NADH ratios, contrary to previous observations of increased OCR and unaltered NAD+/NADH ratios in MCT1/4-inhibited cancer cells. Furthermore, U-13C6-glucose labeling of MCT1/4-inhibited LCLs revealed depleted glutathione pools that correlated with elevated reactive oxygen species. Finally, we found that dual MCT1/4 inhibition also sensitized LCLs to killing by the electron transport chain complex I inhibitors phenformin and metformin. These findings were extended to viral lymphomas associated with EBV and the related gammaherpesvirus KSHV, pointing at a therapeutic approach for targeting both viral lymphomas.


Assuntos
Linfoma/metabolismo , Linfoma/virologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Linfócitos B/virologia , Linhagem Celular Tumoral , Proliferação de Células , Infecções por Vírus Epstein-Barr/virologia , Glucose/metabolismo , Glutationa/metabolismo , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Humanos , Ácido Láctico/metabolismo , Linfoma/patologia , Metformina/farmacologia , NAD/metabolismo , Consumo de Oxigênio , Fenformin/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
9.
Cancer ; 128(4): 675-684, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34724198

RESUMO

BACKGROUND: Germline variants in fumarate hydratase (FH) are associated with autosomal dominant (AD) hereditary leiomyomatosis and renal cell cancer (HLRCC) and autosomal recessive (AR) fumarase deficiency (FMRD). The prevalence and cancer penetrance across different FH variants remain unclear. METHODS: A database containing 120,061 records from individuals undergoing cancer germline testing was obtained. FH variants were classified into 3 categories: AD HLRCC variants, AR FMRD variants, and variants of unknown significance (VUSs). Individuals with variants from these categories were compared with those with negative genetic testing. RESULTS: FH variants were detected in 1.3% of individuals (AD HLRCC, 0.3%; AR FMRD, 0.4%; VUS, 0.6%). The rate of AD HLRCC variants discovered among reportedly asymptomatic individuals without a clear indication for HLRCC testing was 1 in 2668 (0.04%). In comparison with those with negative genetic testing, the renal cell carcinoma (RCC) prevalence was elevated with AD HLRCC variants (17.0% vs 4.5%; P < .01) and VUSs (6.4% vs 4.5%; P = .02) but not with AR FMRD variants. CONCLUSIONS: The prevalence of HLRCC discovered incidentally on germline testing is similar to recent population carrier estimates, and this suggests that this is a relatively common cancer syndrome. Compared with those with negative genetic testing, those with VUSs had an elevated risk of RCC, whereas those with AR FMRD variants did not.


Assuntos
Carcinoma de Células Renais , Fumarato Hidratase , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/genética , Feminino , Fumarato Hidratase/genética , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Neoplasias Renais/epidemiologia , Neoplasias Renais/genética , Leiomiomatose/epidemiologia , Leiomiomatose/genética , Leiomiomatose/patologia , Síndromes Neoplásicas Hereditárias/epidemiologia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/patologia , Prevalência , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Uterinas/epidemiologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia
10.
Mol Cell ; 49(2): 310-21, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23201122

RESUMO

Differences in global levels of histone acetylation occur in normal and cancer cells, although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pH(i)). As pH(i) decreases, histones are globally deacetylated by histone deacetylases (HDACs), and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs), preventing further reductions in pH(i). Conversely, global histone acetylation increases as pH(i) rises, such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pH(i), particularly compromising pH(i) maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus, acetylation of chromatin functions as a rheostat to regulate pH(i) with important implications for mechanism of action and therapeutic use of HDAC inhibitors.


Assuntos
Histonas/metabolismo , Líquido Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Acetatos , Acetilação , Metabolismo dos Carboidratos , Cromatina , Regulação da Expressão Gênica , Glucose/fisiologia , Glutamina/fisiologia , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/genética , Humanos , Concentração de Íons de Hidrogênio , Ácidos Hidroxâmicos/farmacologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Niacinamida/farmacologia , Ácido Pirúvico/metabolismo , Análise de Sequência de RNA , Transcriptoma
11.
Nature ; 510(7505): 397-401, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24828042

RESUMO

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit ß is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit ß and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Longevidade/fisiologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células Jurkat , Longevidade/efeitos dos fármacos , Longevidade/genética , Camundongos , ATPases Mitocondriais Próton-Translocadoras/genética , Ligação Proteica
12.
BMC Biol ; 17(1): 59, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319842

RESUMO

This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.


Assuntos
Neoplasias/metabolismo , Vírus/metabolismo , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Neoplasias/virologia
13.
Mol Syst Biol ; 13(2): 914, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202506

RESUMO

Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.


Assuntos
Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica/métodos , Glicólise , Neoplasias/genética , Linhagem Celular Tumoral , Evolução Molecular , Amplificação de Genes , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Redes e Vias Metabólicas , Análise de Componente Principal , Seleção Genética
14.
Nature ; 546(7658): 357-358, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28607481
15.
J Cell Sci ; 128(12): 2236-48, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25956888

RESUMO

Autocrine VEGF is necessary for endothelial survival, although the cellular mechanisms supporting this function are unknown. Here, we show that--even after full differentiation and maturation--continuous expression of VEGF by endothelial cells is needed to sustain vascular integrity and cellular viability. Depletion of VEGF from the endothelium results in mitochondria fragmentation and suppression of glucose metabolism, leading to increased autophagy that contributes to cell death. Gene-expression profiling showed that endothelial VEGF contributes to the regulation of cell cycle and mitochondrial gene clusters, as well as several--but not all--targets of the transcription factor FOXO1. Indeed, VEGF-deficient endothelium in vitro and in vivo showed increased levels of FOXO1 protein in the nucleus and cytoplasm. Silencing of FOXO1 in VEGF-depleted cells reversed expression profiles of several of the gene clusters that were de-regulated in VEGF knockdown, and rescued both cell death and autophagy phenotypes. Our data suggest that endothelial VEGF maintains vascular homeostasis through regulation of FOXO1 levels, thereby ensuring physiological metabolism and endothelial cell survival.


Assuntos
Apoptose , Comunicação Autócrina , Autofagia , Biomarcadores/metabolismo , Endotélio Vascular/patologia , Fatores de Transcrição Forkhead/metabolismo , Mitocôndrias/patologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Western Blotting , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Humanos , Hipóxia/fisiopatologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
16.
J Biol Chem ; 290(9): 5566-81, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25468909

RESUMO

Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity.


Assuntos
Proteínas de Fase Aguda/metabolismo , Tecido Adiposo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Lipocalinas/metabolismo , Obesidade/metabolismo , Proteínas Oncogênicas/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda/genética , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Lipocalina-2 , Lipocalinas/sangue , Lipocalinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Proteínas Oncogênicas/sangue , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Semin Cell Dev Biol ; 23(4): 352-61, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22406683

RESUMO

Altered cellular metabolism is a defining feature of cancer [1]. The best studied metabolic phenotype of cancer is aerobic glycolysis--also known as the Warburg effect--characterized by increased metabolism of glucose to lactate in the presence of sufficient oxygen. Interest in the Warburg effect has escalated in recent years due to the proven utility of FDG-PET for imaging tumors in cancer patients and growing evidence that mutations in oncogenes and tumor suppressor genes directly impact metabolism. The goals of this review are to provide an organized snapshot of the current understanding of regulatory mechanisms important for Warburg effect and its role in tumor biology. Since several reviews have covered aspects of this topic in recent years, we focus on newest contributions to the field and reference other reviews where appropriate.


Assuntos
Glicólise , Neoplasias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos , Fluordesoxiglucose F18/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Neoplasias/diagnóstico por imagem , Células-Tronco Neoplásicas/metabolismo , Tomografia por Emissão de Pósitrons , Processamento de Proteína Pós-Traducional , Compostos Radiofarmacêuticos/metabolismo , Microambiente Tumoral
18.
Am J Pathol ; 182(4): 1400-11, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416162

RESUMO

Liposarcoma is a type of soft tissue sarcoma that exhibits poor survival and a high recurrence rate. Treatment is generally limited to surgery and radiation, which emphasizes the need for better understanding of this disease. Because very few in vivo and in vitro models can reproducibly recapitulate the human disease, we generated several xenograft models from surgically resected human dedifferentiated liposarcoma. All xenografts recapitulated morphological and gene expression characteristics of the patient tumors after continuous in vivo passages. Importantly, xenograftability was directly correlated with disease-specific survival of liposarcoma patients. Thus, the ability for the tumor of a patient to engraft may help identify those patients who will benefit from more aggressive treatment regimens. Gene expression analyses highlighted the association between xenograftability and a unique gene expression signature, including down-regulated PTEN tumor-suppressor gene expression and a progenitor-like phenotype. When treated with the PI3K/AKT/mTOR pathway inhibitor rapamycin alone or in combination with the multikinase inhibitor sorafenib, all xenografts responded with increased lipid content and a more differentiated gene expression profile. These human xenograft models may facilitate liposarcoma research and accelerate the generation of readily translatable preclinical data that could ultimately influence patient care.


Assuntos
Regulação para Baixo/genética , Lipossarcoma/enzimologia , Lipossarcoma/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipossarcoma/tratamento farmacológico , Lipossarcoma/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Nat Chem Biol ; 8(10): 839-47, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22922757

RESUMO

Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.


Assuntos
Biopolímeros/metabolismo , Transformação Celular Neoplásica , Ativadores de Enzimas/farmacologia , Piruvato Quinase/metabolismo , Animais , Biopolímeros/química , Western Blotting , Proliferação de Células , Humanos , Camundongos , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Piruvato Quinase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA