Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 579(7797): 123-129, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103176

RESUMO

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease1-9. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.


Assuntos
Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/química , Metabolômica , Microbiota/fisiologia , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Cólico/biossíntese , Ácido Cólico/química , Ácido Cólico/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Vida Livre de Germes , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
Biochemistry ; 61(4): 228-238, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119840

RESUMO

CA-074 is a selective inhibitor of cathepsin B, a lysosomal cysteine protease. CA-074 has been utilized in numerous studies to demonstrate the role of this protease in cellular and physiological functions. Cathepsin B in numerous human disease mechanisms involves its translocation from acidic lysosomes of pH 4.6 to neutral pH 7.2 of cellular locations, including the cytosol and extracellular environment. To gain in-depth knowledge of CA-074 inhibition under these different pH conditions, this study evaluated the molecular features, potency, and selectivity of CA-074 for cathepsin B inhibition under acidic and neutral pH conditions. This study demonstrated that CA-074 is most effective at inhibiting cathepsin B at an acidic pH of 4.6 with nM potency, which was more than 100-fold more potent than its inhibition at a neutral pH of 7.2. The pH-dependent inhibition of CA-074 was abolished by methylation of its C-terminal proline, indicating the requirement for the free C-terminal carboxyl group for pH-dependent inhibition. Under these acidic and neutral pH conditions, CA-074 maintained its specificity for cathepsin B over other cysteine cathepsins, displayed irreversible inhibition, and inhibited diverse cleavages of peptide substrates of cathepsin B assessed by profiling mass spectrometry. Molecular docking suggested that pH-dependent ionic interactions of the C-terminal carboxylate of CA-074 occur with His110 and His111 residues in the S2' subsite of the enzyme at pH 4.6, but these interactions differ at pH 7.2. While high levels of CA-074 or CA-074Me (converted by cellular esterases to CA-074) are used in biological studies to inhibit cathepsin B at both acidic and neutral pH locations, it is possible that adjusted levels of CA-074 or CA-074Me may be explored to differentially affect cathepsin B activity at these different pH values. Overall, the results of this study demonstrate the molecular, kinetic, and protease specificity features of CA-074 pH-dependent inhibition of cathepsin B.


Assuntos
Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Animais , Catepsina B/metabolismo , Catepsina L/farmacologia , Catepsinas/metabolismo , Cisteína/metabolismo , Inibidores de Cisteína Proteinase/química , Citosol/metabolismo , Dipeptídeos/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lisossomos/metabolismo , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo
3.
J Nat Prod ; 84(1): 161-182, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33352046

RESUMO

Three families of RNA viruses, the Coronaviridae, Flaviviridae, and Filoviridae, collectively have great potential to cause epidemic disease in human populations. The current SARS-CoV-2 (Coronaviridae) responsible for the COVID-19 pandemic underscores the lack of effective medications currently available to treat these classes of viral pathogens. Similarly, the Flaviviridae, which includes such viruses as Dengue, West Nile, and Zika, and the Filoviridae, with the Ebola-type viruses, as examples, all lack effective therapeutics. In this review, we present fundamental information concerning the biology of these three virus families, including their genomic makeup, mode of infection of human cells, and key proteins that may offer targeted therapies. Further, we present the natural products and their derivatives that have documented activities to these viral and host proteins, offering hope for future mechanism-based antiviral therapeutics. By arranging these potential protein targets and their natural product inhibitors by target type across these three families of virus, new insights are developed, and crossover treatment strategies are suggested. Hence, natural products, as is the case for other therapeutic areas, continue to be a promising source of structurally diverse new anti-RNA virus therapeutics.


Assuntos
Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Tratamento Farmacológico da COVID-19 , Infecções por Vírus de RNA/tratamento farmacológico , Animais , Desenvolvimento de Medicamentos , Genoma Viral , Humanos , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/enzimologia , Vírus de RNA/fisiologia , Replicação Viral
4.
Anal Chem ; 90(8): 5358-5365, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578702

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous lipids with antidiabetic and anti-inflammatory activities. Interest in these lipids is due to their unique biological activites and the observation that insulin-resistant people have lower palmitic acid esters of hydroxystearic acid (PAHSA) levels, suggesting that a FAHFA deficiency may contribute to metabolic disease. Rigorous testing of this hypothesis will require the measurement of many clinical samples; however, current analytical workflows are too slow to enable samples to be analyzed quickly. Here we describe the development of a significantly faster workflow to measure FAHFAs that optimizes the fractionation and chromatography of these lipids. We can measure FAHFAs in 30 min with this new protocol versus 90 min using the older protocol with comparable performance in regioisomer detection and quantitation. We also discovered through this optimization that oleic acid esters of hydroxystearic acids (OAHSAs), another family of FAHFAs, have a much lower background signal than PAHSAs, which makes them easier to measure. Our faster workflow was able to quantify changes in PAHSAs and OAHSAs in mouse tissues and human plasma, highlighting the potential of this protocol for basic and clinical applications.


Assuntos
Ésteres/análise , Ácidos Graxos/análise , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Extração em Fase Sólida
5.
ACS Chem Biol ; 16(9): 1628-1643, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34416110

RESUMO

Cathepsin B is a cysteine protease that normally functions within acidic lysosomes for protein degradation, but in numerous human diseases, cathepsin B translocates to the cytosol having neutral pH where the enzyme activates inflammation and cell death. Cathepsin B is active at both the neutral pH 7.2 of the cytosol and the acidic pH 4.6 within lysosomes. We evaluated the hypothesis that cathepsin B may possess pH-dependent cleavage preferences that can be utilized for design of a selective neutral pH inhibitor by (1) analysis of differential cathepsin B cleavage profiles at neutral pH compared to acidic pH using multiplex substrate profiling by mass spectrometry (MSP-MS), (2) design of pH-selective peptide-7-amino-4-methylcoumarin (AMC) substrates, and (3) design and validation of Z-Arg-Lys-acyloxymethyl ketone (AOMK) as a selective neutral pH inhibitor. Cathepsin B displayed preferences for cleaving peptides with Arg in the P2 position at pH 7.2 and Glu in the P2 position at pH 4.6, represented by its primary dipeptidyl carboxypeptidase and modest endopeptidase activity. These properties led to design of the substrate Z-Arg-Lys-AMC having neutral pH selectivity, and its modification with the AOMK warhead to result in the inhibitor Z-Arg-Lys-AOMK. This irreversible inhibitor displays nanomolar potency with 100-fold selectivity for inhibition of cathepsin B at pH 7.2 compared to pH 4.6, shows specificity for cathepsin B over other cysteine cathepsins, and is cell permeable and inhibits intracellular cathepsin B. These findings demonstrate that cathepsin B possesses pH-dependent cleavage properties that can lead to development of a potent, neutral pH inhibitor of this enzyme.


Assuntos
Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Citosol/metabolismo , Lisossomos/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Catepsinas/metabolismo , Permeabilidade da Membrana Celular , Inibidores de Cisteína Proteinase/metabolismo , Endopeptidases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Peptídeos/metabolismo , Ligação Proteica , Especificidade por Substrato
6.
Org Lett ; 22(6): 2365-2370, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32134277

RESUMO

Thiopeptides are a class of natural products with untapped therapeutic potential. To expand the methods available for the scaled production of these antibiotics, we report the laboratory synthesis of micrococcin P1 showcasing thiazole forming reactions of cysteine derivatives and nitriles followed by oxidation. In most instances, this thiazole forming sequence does not require chromatography and proved scalable. Using this approach, 199 mg of micrococcin P1 was generated in a single synthetic sequence.


Assuntos
Bacteriocinas/síntese química , Cisteína/análogos & derivados , Nitrilas/química , Tiazóis/síntese química , Cisteína/química , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA