RESUMO
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog1,2, but how it occurs in cities is often puzzling3. If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5.
RESUMO
We present a novel mechanism for the formation of photocatalytic oxidants in deliquescent NaCl particles, which can greatly promote the multiphase photo-oxidation of SO2 to produce sulfate. The photoexcitation of the [Cl--H3O+-O2] complex leads to the generation of Cl and OH radicals, which is the key reason for enhancing aqueous-phase oxidation and accelerating SO2 oxidation. The mass normalization rate of sulfate production from the multiphase photoreaction of SO2 on NaCl droplets could be estimated to be 0.80 × 10-4 µg·h-1 at 72% RH and 1.33 × 10-4 µg·h-1 at 81% RH, which is equivalent to the known O3 liquid-phase oxidation mechanism. Our findings highlight the significance of multiphase photo-oxidation of SO2 on NaCl particles as a non-negligible source of sulfate in coastal areas. Furthermore, this study underscores the importance of Cl- photochemistry in the atmosphere.
RESUMO
In this work, we developed an alternative calibration method for measuring N2O5 with an iodide adduct mass spectrometer (I-CIMS). In this calibration method, N2O5 is heated and then quantified based on the decrease in the amount of NO due to its reaction with the pyrolysis product (NO3). This alternative calibration method was compared with the commonly used method utilizing NOx analyzers equipped with a photolytic converter, which gauge NO2 reduction as a result of its reaction with O3 to quantify N2O5. It is notable that the two methodologies demonstrate favorable consistency in terms of calibrating N2O5, with a variance of less than 10 %. The alternative calibration method is a more reliable way to quantify N2O5 with CIMS, considering the instability of the NO2 conversion efficiency of photolytic converters in NOx analyzers and the loss of N2O5 in the sampling line. The effects of O3 and relative humidity (RH) on the sensitivity toward N2O5 were further examined. There was minimal perturbation of N2O5 quantification upon exposure to O3 even at high concentrations. The N2O5 sensitivity exhibited a nonlinear dependence on RH as it initially rose and then fell. Besides I(N2O5)-, the collisional interaction between I(H2O)- and N2O5 also forms I(HNO3)-, which may interfere with the accurate quantification of HNO3. As a consequence of the pronounced dependence on humidity, it is advisable to implement humidity correction procedures when conducting measurements of N2O5.
RESUMO
The atmospheric oxidizing capacity is the most important driving force for the chemical transformation of pollutants in the atmosphere. Traditionally, the atmospheric oxidizing capacity mainly depends on the concentration of O3 and other gaseous oxidants. However, the atmospheric oxidizing capacity based on gas-phase oxidation cannot accurately describe the explosive growth of secondary particulate matter under complex air pollution. From the chemical perspective, the atmospheric oxidizing capacity mainly comes from the activation of O2, which can be achieved in both gas-phase and interfacial processes. In the heterogeneous or multiphase formation pathways of secondary particulate matter, the enhancement of oxidizing capacity ascribed to the O2/H2O-involved interfacial oxidation and hydrolysis processes is an unrecognized source of atmospheric oxidizing capacity. Revealing the enhanced oxidizing capacity due to interfacial processes in high-concentration particulate matter environments and its contribution to the formation of secondary pollution are critical in understanding haze chemistry. The accurate evaluation of atmospheric oxidizing capacity ascribed to interfacial processes is also an important scientific basis for the implementation of PM2.5 and O3 collaborative control in China and around the world.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , Material Particulado/análise , Poluição do Ar/análise , China , Estações do Ano , GasesRESUMO
Soot, primarily composed of elemental carbon (EC) and organic carbon (OC), is ubiquitous in PM2.5. In the atmosphere, the heterogeneous interaction between NO2 and soot is not only an important pathway driving soot aging but also of central importance to nitrous acid (HONO) formation. It is commonly believed that the surface redox reaction between reductive OC and NO2 dominates the night aging of soot and the conversion of NO2 to HONO. However, completely differing from the currently popular explanation, we find here that the redox reaction between EC and NO2 can also drive the conversion of NO2 to HONO during soot aging. By combining in situ experiments with density functional theory (DFT) calculations, we proposed that the surface carbon vacancy defects on graphite/graphene-like EC should be a type of potential primary adsorption and reactive sites inducing the heterogeneous reduction of NO2. We suggested a new mechanism that NO2 is reduced to form HONO on surface vacancy defects through the splitting of H2O molecules, and the carbon atoms adjacent to surface vacancy are simultaneously oxidized to form hydroxyl-functionalized EC. This novel finding provides insights into the chemical mechanism driving the NO2-to-HONO conversion and rapid soot aging, which expands our knowledge of the heterogeneous chemistry of soot in the atmosphere.
RESUMO
The interplay between sulfur and iron holds significant importance in their atmospheric cycle, yet a complete understanding of their coupling mechanism remains elusive. This investigation delves comprehensively into the evolution of reactive oxygen species (ROS) during the interfacial reactions involving sulfur dioxide (SO2) and iron oxides under varying relative humidity conditions. Notably, the direct activation of water by iron oxide was observed to generate a surface hydroxyl radical (â¢OH). In comparison, the aging of SO2 was found to markedly augment the production of â¢OH radicals on the surface of α-Fe2O3 under humid conditions. This augmentation was ascribed to the generation of superoxide radicals (â¢O2-) stemming from the activation of O2 through the Fe(II)/Fe(III) cycle and its combination with the H+ ion to produce hydrogen peroxide (H2O2) on the acidic surface. Moreover, the identification of moderate relative humidity as a pivotal factor in sustaining the surface acidity of iron oxide during SO2 aging underscores its crucial role in the coupling of iron dissolution, ROS production, and SO2 oxidation. Consequently, the interfacial reactions between SO2 and iron oxides under humid conditions are elucidated as atmospheric processes that enhance oxidation capacity rather than deplete ROS. These revelations offer novel insights into the mechanisms underlying â¢OH radical generation and oxidative potential within atmospheric interfacial chemistry.
Assuntos
Espécies Reativas de Oxigênio , Dióxido de Enxofre , Dióxido de Enxofre/química , Compostos Férricos/química , Radical Hidroxila/química , Oxirredução , Peróxido de Hidrogênio/química , UmidadeRESUMO
HONO acts as a major OH source, playing a vital role in secondary pollutant formation to deteriorate regional air quality. Strong unknown sources of daytime HONO have been widely reported, which significantly limit our understanding of radical cycling and atmospheric oxidation capacity. Here, we identify a potential daytime HONO and OH source originating from photoexcited phenyl organic nitrates formed during the photoreaction of aromatics and NOx. Significant HONO (1.56-4.52 ppb) and OH production is observed during the photoreaction of different kinds of aromatics with NOx (18.1-242.3 ppb). We propose an additional mechanism involving photoexcited phenyl organic nitrates (RONO2) reacting with water vapor to account for the higher levels of measured HONO and OH than the model prediction. The proposed HONO formation mechanism was evidenced directly by photolysis experiments using typical RONO2 under UV irradiation conditions, during which HONO formation was enhanced by relative humidity. The 0-D box model incorporated in this mechanism accurately reproduced the evolution of HONO and aromatic. The proposed mechanism contributes 5.9-36.6% of HONO formation as the NOx concentration increased in the photoreaction of aromatics and NOx. Our study implies that photoexcited phenyl organic nitrates are an important source of atmospheric HONO and OH that contributes significantly to atmospheric oxidation capacity.
Assuntos
Poluentes Ambientais , Ácido Nitroso , Ácido Nitroso/análise , Radical Hidroxila , Oxirredução , Raios Ultravioleta , NitratosRESUMO
Bromine chemistry is responsible for the catalytic ozone destruction in the atmosphere. The heterogeneous reactions of sea-salt aerosols are the main abiotic sources of reactive bromine in the atmosphere. Here, we present a novel mechanism for the activation of bromide ions (Br-) by O2 and H2O in the absence of additional oxidants. The laboratory and theoretical calculation results demonstrated that under dark conditions, Br-, O2 and H3O+ could spontaneously generate Br and HO2 radicals through a proton-electron transfer process at the air-water interface and in the liquid phase. Our results also showed that light and acidity could significantly promote the activation of Br- and the production of Br2. The estimated gaseous Br2 production rate was up to 1.55×1010 molecules cm-2 â s-1 under light and acidic conditions; these results showed a significant contribution to the atmospheric reactive bromine budget. The reactive oxygen species (ROS) generated during Br- activation could promote the multiphase oxidation of SO2 to produce sulfuric acid, while the increase in acidity had a positive feedback effect on Br- activation. Our findings highlight the crucial role of the proton-electron transfer process in Br2 production; here, H3O+ facilitates the activation of Br- by O2, serves as a significant source of atmospheric reactive bromine and exerts a profound impact on the atmospheric oxidation capacity.
RESUMO
Vehicular evaporative emissions make an increasing contribution to anthropogenic sources of volatile organic compounds (VOCs), thus contributing to secondary organic aerosol (SOA) formation. However, few studies have been conducted on SOA formation from vehicle evaporative VOCs under complex pollution conditions with the coexistence of NOx, SO2, and NH3. In this study, the synergistic effects of SO2 and NH3 on SOA formation from gasoline evaporative VOCs with NOx were examined using a 30 m3 smog chamber with the aid of a series of mass spectrometers. Compared with the systems involving SO2 or NH3 alone, SO2 and NH3 coexistence had a greater promotion effect on SOA formation, which was larger than the cumulative effect of the two promotions alone. Meanwhile, contrasting effects of SO2 on the oxidation state (OSc) of SOA in the presence or absence of NH3 were observed, and SO2 could further increase the OSc with the coexistence of NH3. The latter was attributed to the synergistic effects of SO2 and NH3 coexistence on SOA formation, wherein N-S-O adducts can be formed from the reaction of SO2 with N-heterocycles generated in the presence of NH3. Our study contributes to the understanding of SOA formation from vehicle evaporative VOCs under highly complex pollution conditions and its atmospheric implications.
Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Gasolina , Aerossóis/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Poluição Ambiental , Poluentes Atmosféricos/análiseRESUMO
Secondary organic aerosol (SOA) is a significant component of atmospheric fine particulate matter (PM2.5), and their physicochemical properties can be significantly changed in the aging process. In this study, we used a combination consisting of a smog chamber (SC) and oxidation flow reactor (OFR) to investigate the continuous aging process of gas-phase organic intermediates and SOA formed from the photooxidation of toluene, a typical aromatic hydrocarbon. Our results showed that as the OH exposure increased from 2.6 × 1011 to 6.3 × 1011 molecules cm-3 s (equivalent aging time of 2.01-4.85 days), the SOA mass concentration (2.9 ± 0.05-28.7 ± 0.6 µg cm-3) and corrected SOA yield (0.073-0.26) were significantly enhanced. As the aging process proceeds, organic acids and multiple oxygen-containing oxidation products are continuously produced from the photochemical aging process of gas-phase organic intermediates (mainly semi-volatile and intermediate volatility species, S/IVOCs). The multigeneration oxidation products then partition to the aerosol phase, while functionalization of SOA rather than fragmentation dominated in the photochemical aging process, resulting in much higher SOA yield after aging compared to that in the SC. Our study indicates that SOA yields as a function of OH exposure should be considered in air quality models to improve SOA simulation, and thus accurately assess the impact on SOA properties and regional air quality.
Assuntos
Hidrocarbonetos Aromáticos , Smog , Tolueno , Aerossóis , OxigênioRESUMO
TiO2 is a widely used material in building coatings. Many studies have revealed that TiO2 promotes the heterogeneous oxidation of SO2 and the subsequent sulfate formation. However, whether and how much TiO2 contributes to the gaseous H2SO4 and subsequent new particle formation (NPF) still remains unclear. Herein, we used a 1 m3 quartz smog chamber to investigate NPF in the presence of TiO2. The experimental results indicated that TiO2 could greatly promote NPF. The increases in particle formation rate (J) and growth rate due to the presence of TiO2 were quantified, and the promotion effect was attributed to the production of gaseous H2SO4. The promotion effect of TiO2 on SO2 oxidation and subsequent NPF decreased gradually due to the formation of surface sulfate but did not disappear completely, instead partly recovering after washing with water. Moreover, the promotion effect of TiO2 on NPF was observed regardless of differences in RH, and the most significant promotion effect of TiO2 associated with the strongest NPF occurred at an RH of 20%. Based on the experimental evidence, the environmental impact of TiO2 on gaseous H2SO4 and particle pollution in urban areas was estimated.
Assuntos
Poluentes Atmosféricos , Smog , Poluentes Atmosféricos/análise , Titânio , SulfatosRESUMO
Toxic trace elements (TEs) can pose serious risks to ecosystems and human health. However, a comprehensive understanding of atmospheric emission inventories for several concerning TEs has not yet been developed. In this study, we systematically reviewed the status and progress of existing research in developing atmospheric emission inventories of TEs focusing on global, regional, and sectoral scales. Multiple studies have strengthened our understanding of the global emission of TEs, despite attention being mainly focused on Hg and source classification in different studies showing large discrepancies. In contrast to those of developed countries and regions, the officially published emission inventory is still lacking in developing countries, despite the fact that studies on evaluating the emissions of TEs on a national scale or one specific source category have been numerous in recent years. Additionally, emissions of TEs emitted from waste incineration and traffic-related sources have produced growing concern with worldwide rapid urbanization. Although several studies attempt to estimate the emissions of TEs based on PM emissions and its source-specific chemical profiles, the emission factor approach is still the universal method. We call for more extensive and in-depth studies to establish a precise localization national emission inventory of TEs based on adequate field measurements and comprehensive investigation to reduce uncertainty.
Assuntos
Poluentes Atmosféricos , Mercúrio , Oligoelementos , Humanos , Oligoelementos/análise , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental/métodos , Mercúrio/análiseRESUMO
The heterogeneous oxidation of SO2 by NO2 has been extensively proposed as an important pathway of sulfate production during haze events in China. However, the kinetics and mechanism of oxidation of SO2 by NO2 on the surface of complex particles remain poorly understood. Here, we systematically explore the mechanism and kinetics of the reaction between SO2 and NO2 on diesel black carbon (DBC) under light irradiation. The experimental results prove that DBC photochemistry can not only significantly promote the heterogeneous reduction of NO2 to produce HONO via transferring photoinduced electrons but also indirectly promote OH radical formation. These reduction products of NO2 as well as NO2 itself greatly promote the heterogeneous oxidation of SO2 on DBC. NO2 oxidation, HONO oxidation, and the surface photo-oxidation process are proven to be three major surface oxidation pathways of SO2. The kinetics results indicate that the surface photooxidation pathway accounts for the majority of the total SO2 uptake (â¼63%), followed by the HONO oxidation pathway (â¼27%) and direct oxidation by NO2 (â¼10%). This work highlights the significant synergistic roles of DBC, NO2, and light irradiation in enhancing the atmospheric oxidation capacity and promoting the heterogeneous formation of sulfate.
Assuntos
Dióxido de Nitrogênio , Óxidos de Enxofre , China , Oxirredução , Fuligem , Sulfatos , CarbonoRESUMO
Nitrate photolysis is a vital process in secondary NOx release into the atmosphere. The heterogeneous oxidation of SO2 due to nitrate photolysis has been widely reported, while the influence of SO2 on nitrate photolysis has rarely been investigated. In this study, the photolysis of nitrate on different substrates was investigated in the absence and presence of SO2. In the photolysis of NH4NO3 on the membrane without mineral oxides, NO, NO2, HONO, and NH3 decreased by 17.1, 6.0, 12.6, and 57.1% due to the presence of SO2, respectively. In the photolysis of NH4NO3 on the surface of mineral oxides, SO2 also exhibited an inhibitory effect on the production of NOx, HONO, and NH3 due to its reducibility and acidic products, while the increase in surface acidity due to the accumulation of abundant sulfate on TiO2 and MgO promoted the release of HONO. On the photoactive oxide TiO2, HSO3-, generated by the uptake of SO2, could compete for holes with nitrate to block nitrate photolysis. This study highlights the interaction between the heterogeneous oxidation of SO2 and nitrate photolysis and provides a new perspective on how SO2 affects the photolysis of nitrate absorbed on the photoactive oxides.
Assuntos
Nitratos , Óxidos , Fotólise , MineraisRESUMO
Clarifying the driving forces of O3 and fine particulate matter (PM2.5) co-pollution is important to perform their synergistic control. This work investigated the co-pollution of O3 and PM2.5 in Hainan Province using an observation-based model and explainable machine learning. The O3 and PM2.5 pollution that occurs in winter is affected by the wintertime East Asian Monsoon. The O3 formation shifts from a NOx-limited regime with a low O3 production rate (PO3) in the non-pollution season to a transition regime with a high PO3 in the pollution season due to an increase in NOx concentrations. Increased O3 and atmospheric oxidation capacity promote the conversion from gas-phase precursors to aerosols. Meanwhile, the high concentration of particulate nitrate favors HONO formation via photolysis, in turn facilitating O3 production. Machine learning reveals that NOx promotes O3 and PM2.5 co-pollution during the pollution period. The PO3 shows an upward trend at the observation site from 2018 to 2022 due to the inappropriate reduction of volatile organic compounds (VOCs) and NOx in the upwind areas. Our results suggest that a deep reduction of NOx should benefit both O3 and PM2.5 pollution control in Hainan and bring new insights into improving air quality in other regions of China in the future.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Compostos Orgânicos Voláteis/análiseRESUMO
N2 O5 is an important intermediate in the atmospheric nitrogen cycle. Using a flow tube reactor, N2 O5 was found to be released from the TiO2 surface during the photocatalytic oxidation of NO2 , revealing a previously unreported source of N2 O5 . The rate of N2 O5 release from TiO2 was dependent on the initial NO2 concentration, relative humidity, O2 /N2 ratio, and irradiation intensity. Experimental evidence and quantum chemical calculations showed that NO2 can react with the surface hydroxyl groups and the generated electron holes on the TiO2 , followed by combining with another NO2 molecule to form N2 O5 . The latter was physisorbed on TiO2 and had a low adsorption energy of -0.13â eV. Box model simulations indicated that the new source of N2 O5 released from TiO2 can increase the daytime N2 O5 concentration by up to 20 % in urban areas if abundant TiO2 -containing materials and high NOx concentrations were present. This joint experimental/theoretical study not only demonstrates a new chemical mechanism for N2 O5 formation but also has important implications for air quality in urban areas.
Assuntos
Dióxido de Nitrogênio , Titânio , Titânio/química , Modelos TeóricosRESUMO
China is facing dual pressures to reduce both PM2.5 and O3 pollution, the crucial precursors of which are NOx and VOCs. In our study, the role of NOx in both secondary organic aerosol (SOA, the important constituent of PM2.5) and O3 formation was examined in our 30 m3 indoor smog chamber. As revealed in the present study, the NOx level can obviously affect the OH concentration and volatility distribution of gas-phase oxidation products and thus O3 and SOA formation. Reducing the NOx concentration to the NOx-sensitive regime can inhibit O3 formation (by 42%), resulting in the reduction of oxidation capacity, which suppresses the SOA formation (by 45%) by inhibiting the formation of O- and N-containing gas-phase oxidation products with low volatility. The contribution of these oxidation products to the formation of SOA was also estimated, and the results could substantially support the trend of SOA yield with NOx at different VOC levels. The atmospheric implications of NOx in the coordinated control of PM2.5 and O3 are also discussed.
Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Aromáticos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Ozônio/análise , SmogRESUMO
Biogenic volatile organic compound (BVOC) emissions have long been known to play vital roles in modulating the formation of ozone and secondary organic aerosols (SOAs). While early studies have evaluated their impact globally or regionally, the BVOC emissions emitted from urban green spaces (denoted as U-BVOC emissions) have been largely ignored primarily due to the failure of low-resolution land cover in resolving such processes, but also because their important contribution to urban BVOCs was previously unrecognized. In this study, by utilizing a recently released high-resolution land cover dataset, we develop the first set of emission inventories of U-BVOCs in China at spatial resolutions as high as 1 km. This new dataset resolved densely distributed U-BVOCs in urban core areas. The U-BVOC emissions in megacities could account for a large fraction of total BVOC emissions, and the good agreement of the interannual variations between the U-BVOC emissions and ozone concentrations over certain regions stresses their potentially crucial role in influencing ozone variations. The newly constructed U-BVOC emission inventory is expected to provide an improved dataset to enable the research community to re-examine the modulation of BVOCs on the formation of ozone, SOA, and atmospheric chemistry in urban environments.
Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Ozônio/análise , Parques RecreativosRESUMO
Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. However, most of them are made of Teflon films, which have relatively high background contaminations due to the wall effect. We developed the world's first medium-size quartz chamber (10 m3), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-steel frame. Characterizations show that this chamber exhibits excellent performance in terms of relative humidity (RH) (2-80%) and temperature (15-30 ± 1 °C) control, mixing efficiency of the reactants (6-8 min), light transmittance (>90% above 290 nm), and wall loss of pollutants. The wall loss rates of the gas-phase pollutants are on the order of 10-4 min-1 at 298 K under dry conditions. It is 0.08 h-1 for 100-500 nm particles, significantly lower than those of Teflon chambers. The photolysis rate of NO2 (JNO2) is automatically adjustable to simulate the diurnal variation of solar irradiation from 0 to 0.40 min-1. The inner surface of the chamber can be repeatedly washed with deionized water, resulting in low background contaminations. Both experiments (toluene-NOx and α-pinene-ozone systems) and box model demonstrate that this new quartz chamber can provide high-quality data for investigating SOA and O3 formation in the atmosphere.
Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Politetrafluoretileno , Quartzo , Smog/análiseRESUMO
The understanding at a molecular level of ambient secondary organic aerosol (SOA) formation is hampered by poorly constrained formation mechanisms and insufficient analytical methods. Especially in developing countries, SOA related haze is a great concern due to its significant effects on climate and human health. We present simultaneous measurements of gas-phase volatile organic compounds (VOCs), oxygenated organic molecules (OOMs), and particle-phase SOA in Beijing. We show that condensation of the measured OOMs explains 26-39% of the organic aerosol mass growth, with the contribution of OOMs to SOA enhanced during severe haze episodes. Our novel results provide a quantitative molecular connection from anthropogenic emissions to condensable organic oxidation product vapors, their concentration in particle-phase SOA, and ultimately to haze formation.