Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Drug Metab Dispos ; 52(7): 582-596, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38697852

RESUMO

The International Consortium for Innovation and Quality in Pharmaceutical Development Transporter Working Group had a rare opportunity to analyze a crosspharma collation of in vitro data and assay methods for the evaluation of drug transporter substrate and inhibitor potential. Experiments were generally performed in accordance with regulatory guidelines. Discrepancies, such as not considering the impact of preincubation for inhibition and free or measured in vitro drug concentrations, may be due to the retrospective nature of the dataset and analysis. Lipophilicity was a frequent indicator of crosstransport inhibition (P-gp, BCRP, OATP1B, and OCT1), with high molecular weight (MW ≥500 Da) also common for OATP1B and BCRP inhibitors. A high level of overlap in in vitro inhibition across transporters was identified for BCRP, OATP1B1, and MATE1, suggesting that prediction of DDIs for these transporters will be common. In contrast, inhibition of OAT1 did not coincide with inhibition of any other transporter. Neutrals, bases, and compounds with intermediate-high lipophilicity tended to be P-gp and/or BCRP substrates, whereas compounds with MW <500 Da tended to be OAT3 substrates. Interestingly, the majority of in vitro inhibitors were not reported to be followed up with a clinical study by the submitting company, whereas those compounds identified as substrates generally were. Approaches to metabolite testing were generally found to be similar to parent testing, with metabolites generally being equally or less potent than parent compounds. However, examples where metabolites inhibited transporters in vitro were identified, supporting the regulatory requirement for in vitro testing of metabolites to enable integrated clinical DDI risk assessment. SIGNIFICANCE STATEMENT: A diverse dataset showed that transporter inhibition often correlated with lipophilicity and molecular weight (>500 Da). Overlapping transporter inhibition was identified, particularly that inhibition of BCRP, OATP1B1, and MATE1 was frequent if the compound inhibited other transporters. In contrast, inhibition of OAT1 did not correlate with the other drug transporters tested.


Assuntos
Indústria Farmacêutica , Proteínas de Membrana Transportadoras , Humanos , Indústria Farmacêutica/métodos , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento de Medicamentos/métodos , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Transporte Biológico/fisiologia , Inquéritos e Questionários , Animais
2.
Drug Metab Dispos ; 51(9): 1089-1104, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37137718

RESUMO

In recent years, some endogenous substrates of organic anion transporting polypeptide 1B (OATP1B) have been identified and characterized as potential biomarkers to assess OATP1B-mediated clinical drug-drug interactions (DDIs). However, quantitative determination of their selectivity to OATP1B is still limited. In this study, we developed a relative activity factor (RAF) method to determine the relative contribution of hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1, and sodium-taurocholate co-transporting polypeptide (NTCP) on hepatic uptake of several OATP1B biomarkers, including coproporphyrin I (CPI), coproporphyrin I CPIII, and sulfate conjugates of bile acids: glycochenodeoxycholic acid sulfate (GCDCA-S), glycodeoxycholic acid sulfate (GDCA-S), and taurochenodeoxycholic acid sulfate (TCDCA-S). RAF values for OATP1B1, OATP1B3, OATP2B1, and NTCP were determined in cryopreserved human hepatocytes and transporter transfected cells using pitavastatin, cholecystokinin, resveratrol-3-O-ß-D-glucuronide, and taurocholic acid (TCA) as reference compounds, respectively. OATP1B1-specific pitavastatin uptake in hepatocytes was measured in the absence and presence of 1 µM estropipate, whereas NTCP-specific TCA uptake was measured in the presence of 10 µM rifampin. Our studies suggested that CPI was a more selective biomarker for OATP1B1 than CPIII, whereas GCDCA-S and TCDCA-S were more selective to OATP1B3. OATP1B1 and OATP1B3 equally contributed to hepatic uptake of GDCA-S. The mechanistic static model, incorporating the fraction transported of CPI/III estimated by RAF and in vivo elimination data, predicted several perpetrator interactions with CPI/III. Overall, RAF method combined with pharmacogenomic and DDI studies is a useful tool to determine the selectivity of transporter biomarkers and facilitate the selection of appropriate biomarkers for DDI evaluation. SIGNIFICANCE STATEMENT: The authors developed a new relative activity factor (RAF) method to quantify the contribution of hepatic uptake transporters organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and sodium taurocholate co-transporting polypeptide (NTCP) on several OATP1B biomarkers and evaluated their predictive value on drug-drug interactions (DDI). These studies suggest that the RAF method is a useful tool to determine the selectivity of transporter biomarkers. This method combined with pharmacogenomic and DDI studies will mechanistically facilitate the selection of appropriate biomarkers for DDI prediction.


Assuntos
Transportadores de Ânions Orgânicos , Humanos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Transportador 1 de Ânion Orgânico Específico do Fígado , Hepatócitos , Proteínas de Membrana Transportadoras , Biomarcadores , Interações Medicamentosas
3.
Mol Pharm ; 20(7): 3505-3518, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37283406

RESUMO

Madin-Darby canine kidney (MDCK) cells are widely used to study epithelial cell functionality. Their low endogenous drug transporter protein levels make them an amenable system to investigate transepithelial permeation and drug transporter protein activity after their transfection. MDCK cells display diverse phenotypic traits, and as such, laboratory-to-laboratory variability in drug permeability assessments is observed. Consequently, in vitro-in vivo extrapolation (IVIVE) approaches using permeability and/or transporter activity data require calibration. A comprehensive proteomic quantification of 11 filter-grown parental or mock-transfected MDCK monolayers from 8 different pharmaceutical laboratories using the total protein approach (TPA) is provided. The TPA enables estimations of key morphometric parameters such as monolayer cellularity and volume. Overall, metabolic liability to xenobiotics is likely to be limited for MDCK cells due to the low expression of required enzymes. SLC16A1 (MCT1) was the highest abundant SLC transporter linked to xenobiotic activity, while ABCC4 (MRP4) was the highest abundant ABC transporter. Our data supports existing findings that claudin-2 levels may be linked to tight junction modulation, thus impacting trans-epithelial resistance. This unique database provides data on more than 8000 protein copy numbers and concentrations, thus allowing an in-depth appraisal of the control monolayers used in each laboratory.


Assuntos
Proteoma , Proteômica , Animais , Cães , Células Madin Darby de Rim Canino , Proteoma/metabolismo , Junções Íntimas/metabolismo , Rim/metabolismo , Proteínas de Transporte/metabolismo
4.
Drug Metab Dispos ; 50(7): 909-922, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489778

RESUMO

The multidrug resistance protein 1 (MDR1) P-glycoprotein (P-gp) is a clinically important transporter. In vitro P-gp inhibition assays have been routinely conducted to predict the potential for clinical drug-drug interactions (DDIs) mediated by P-gp. However, high interlaboratory and intersystem variability of P-gp IC50 data limits accurate prediction of DDIs using static models and decision criteria recommended by regulatory agencies. In this study, we calibrated two in vitro P-gp inhibition models: vesicular uptake of N-methyl-quinidine (NMQ) in MDR1 vesicles and bidirectional transport (BDT) of digoxin in Lilly Laboratories Cell Porcine Kidney 1 cells overexpressing MDR1 (LLC-MDR1) using a total of 48 P-gp inhibitor and noninhibitor drugs and digoxin DDI data from 70 clinical studies. Refined thresholds were derived using receiver operating characteristic analysis, and their predictive performance was compared with the decision frameworks proposed by regulatory agencies and selected reference. Furthermore, the impact of various IC50 calculation methods and nonspecific binding of drugs on DDI prediction was evaluated. Our studies suggest that the concentration of inhibitor based on highest approved dose dissolved in 250 ml divided by IC50(I2/IC50) is sufficient to predict P-gp related intestinal DDIs. IC50 obtained from vesicular inhibition assay with a refined threshold of I2/IC50 ≥ 25.9 provides comparable predictive power over those measured by net secretory flux and efflux ratio in LLC-MDR1 cells. We therefore recommend vesicular P-gp inhibition as our preferred method given its simplicity, lower variability, higher assay throughput, and more direct estimation of in vitro kinetic parameters, rather than BDT assay. SIGNIFICANCE STATEMENT: This study has conducted comprehensive calibration of two in vitro P-gp inhibition models: uptake in MDR1 vesicles and bidirectional transport in LLC-MDR1 cell monolayers to predict DDIs. This study suggests that IC50s obtained from vesicular inhibition with a refined threshold of I2/IC50 ≥ 25.9 provide comparable predictive power over those in LLC-MDR1 cells. Therefore, vesicular P-gp inhibition is recommended as the preferred method given its simplicity, lower variability, higher assay throughput, and more direct estimation of in vitro kinetic parameters.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Digoxina , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Digoxina/metabolismo , Suínos , Transcitose
5.
Drug Metab Dispos ; 49(2): 159-168, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33051248

RESUMO

Suspended, plated, or sandwich-cultured human hepatocytes are routinely used for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated hepatic clearance (CL) of drugs. However, these hepatocyte models have been reported to underpredict transporter-mediated in vivo hepatic uptake CL (CL uptake,in vivo ) of some drugs. Therefore, we determined whether transporter-expressing cells (TECs) can accurately predict the CL uptake,in vivo of drugs. To do so, we determined the uptake CL (CL int,uptake,cells ) of rosuvastatin (RSV) by TECs (organic anion transporting polypeptides/Na+-taurocholate cotransporting polypeptide) and then scaled it to that in vivo by relative expression factor (REF) (the ratio of transporter abundance in human livers and TEC) determined by liquid chromatography tandem mass spectrometry-based quantitative proteomics. Both the TEC and hepatocyte models did not meet our predefined success criteria of predicting within 2-fold the RSV CL uptake,in vivo value obtained from our positron emission tomography (PET) imaging. However, the TEC performed better than the hepatocyte models. Interestingly, using REF, TECs successfully predicted RSV CL int,uptake,hep obtained by the hepatocyte models, suggesting that the underprediction of RSV CL uptake,in vivo by TECs and hepatocytes is due to endogenous factor(s) not present in these in vitro models. Therefore, we determined whether inclusion of plasma (or albumin) in TEC uptake studies improved IVIVE of RSV CL uptake,in vivo It did, and our predictions were close to or just fell above our lower 2-fold acceptance boundary. Despite this success, additional studies are needed to improve transporter-mediated IVIVE of hepatic uptake CL of drugs. However, using REF and TEC, we successfully predicted the magnitude of PET-imaged inhibition of RSV CL uptake,in vivo by cyclosporine A. SIGNIFICANCE STATEMENT: We showed that the in vivo transporter-mediated hepatic uptake CL of rosuvastatin, determined by PET imaging, can be predicted (within 2-fold) from in vitro studies in transporter-expressing cells (TECs) (scaled using REF), but only when plasma proteins were included in the in vitro studies. This conclusion did not hold when plasma proteins were absent in the TEC or human hepatocyte studies. Thus, additional studies are needed to improve in vitro to in vivo extrapolation of transporter-mediated drug CL.


Assuntos
Hepatócitos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Proteômica/métodos , Rosuvastatina Cálcica/farmacocinética , Linhagem Celular , Cromatografia Líquida/métodos , Interações Medicamentosas , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Espectrometria de Massas em Tandem/métodos
6.
BMC Vet Res ; 16(1): 234, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641048

RESUMO

BACKGROUND: Tea polyphenols (TPs) attenuate obesity related liver inflammation; however, the anti-obesity effects and anti-inflammatory mechanisms are not clearly understood. This study aimed to determine whether the anti-obesity and anti-inflammatory TPs mechanisms associated with cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression levels, and obesity-related gene response in dogs. RESULTS: Dogs fed TPs displayed significantly decreased (p < 0.01) mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6) compared to dogs that consumed high-fat diet (HFD) alone. TPs significantly (p < 0.01) inhibited COX-2 and iNOS expression level, and decreased liver fat content and degeneration. CONCLUSION: These results suggested that TPs act as a therapeutic agent for obesity, liver inflammation, and fat degeneration via COX-2 and iNOS inhibition, with TNF-α, IL-1ß, and IL-6 involvement.


Assuntos
Camellia sinensis/química , Ciclo-Oxigenase 2/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Obesidade/veterinária , Polifenóis/farmacologia , Animais , Anti-Inflamatórios , Doenças do Cão/tratamento farmacológico , Cães , Inflamação/veterinária , Obesidade/tratamento farmacológico
7.
Ecotoxicol Environ Saf ; 194: 110382, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146195

RESUMO

Deoxynivalenol(DON) has broad toxicity in livestock, but we know little about its neurotoxic mechanisms. We investigated DON neurotoxicity in the cerebral cortex, cerebellum, and hippocampus of "Duroc × Landrace × Yokshire" piglets. Control piglets were fed a basal diet, while those in low- and high-treatment groups were fed diets with 1.3 mg/kg and 2.2 mg/kg DON, respectively. After a 60 d trial, scanning electron microscopy revealed the destruction of hippocampal cell ultrastructure. As DON concentrations increased, oxidative damage also increased in the cerebral cortex, cerebellum, and hippocampus. Norepinephrine and 5-hydroxytryptamine concentrations tended to increase, whereas dopamine and γ-aminobutyric acid concentrations decreased. We also observed an increase in calcium concentration, relative mRNA expression of calcium/calmodulin-dependent protein kinase II (CaMKII), and CaMKII phosphorylation. However, calmodulin (CaM) mRNA and protein content decreased. Overall, our results suggest that DON acts through the Ca2+/CaM/CaMKII signaling pathway to influence cerebral lipid peroxidation and neurotransmitter levels.


Assuntos
Encéfalo/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Neurotransmissores/metabolismo , Tricotecenos/toxicidade , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Dieta , Masculino , Síndromes Neurotóxicas/metabolismo , Oxirredução , Suínos , Desmame
8.
Artigo em Inglês | MEDLINE | ID: mdl-30745392

RESUMO

The combination of the hepatitis C virus (HCV) nonstructural protein 5A (NS5A) inhibitor elbasvir and the NS3/4A protease inhibitor grazoprevir is a potent, once-daily therapy indicated for the treatment of chronic HCV infection in individuals coinfected with human immunodeficiency virus (HIV). We explored the pharmacokinetic interactions of elbasvir and grazoprevir with ritonavir and ritonavir-boosted HIV protease inhibitors in three phase 1 trials. Drug-drug interaction trials with healthy participants were conducted to evaluate the effect of ritonavir on the pharmacokinetics of grazoprevir (n = 10) and the potential two-way pharmacokinetic interactions of elbasvir (n = 30) or grazoprevir (n = 39) when coadministered with ritonavir-boosted atazanavir, lopinavir, or darunavir. Coadministration of ritonavir with grazoprevir increased grazoprevir exposure; the geometric mean ratio (GMR) for grazoprevir plus ritonavir versus grazoprevir alone area under the concentration-time curve from 0 to 24 h (AUC0-24) was 1.91 (90% confidence interval [CI]; 1.31 to 2.79). Grazoprevir exposure was markedly increased with coadministration of atazanavir-ritonavir, lopinavir-ritonavir, and darunavir-ritonavir, with GMRs for grazoprevir AUC0-24 of 10.58 (90% CI, 7.78 to 14.39), 12.86 (90% CI, 10.25 to 16.13), and 7.50 (90% CI, 5.92 to 9.51), respectively. Elbasvir exposure was increased with coadministration of atazanavir-ritonavir, lopinavir-ritonavir, and darunavir-ritonavir, with GMRs for elbasvir AUC0-24 of 4.76 (90% CI, 4.07 to 5.56), 3.71 (90% CI, 3.05 to 4.53), and 1.66 (90% CI, 1.35 to 2.05), respectively. Grazoprevir and elbasvir had little effect on atazanavir, lopinavir, and darunavir pharmacokinetics. Coadministration of elbasvir-grazoprevir with atazanavir-ritonavir, lopinavir-ritonavir, or darunavir-ritonavir is contraindicated, owing to an increase in grazoprevir exposure. Therefore, HIV treatment regimens without HIV protease inhibitors should be considered for HCV/HIV-coinfected individuals who are being treated with elbasvir-grazoprevir.


Assuntos
Antivirais/farmacocinética , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacocinética , Hepatite C/tratamento farmacológico , Adulto , Amidas , Antivirais/farmacologia , Sulfato de Atazanavir/farmacocinética , Sulfato de Atazanavir/farmacologia , Benzofuranos/farmacocinética , Benzofuranos/farmacologia , Carbamatos , Ciclopropanos , Darunavir/farmacocinética , Darunavir/farmacologia , Interações Medicamentosas , Feminino , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Voluntários Saudáveis , Hepacivirus/efeitos dos fármacos , Humanos , Imidazóis/farmacocinética , Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Lopinavir/farmacocinética , Lopinavir/farmacologia , Masculino , Pessoa de Meia-Idade , Quinoxalinas/farmacocinética , Quinoxalinas/farmacologia , Ritonavir/farmacocinética , Ritonavir/farmacologia , Sulfonamidas , Proteínas não Estruturais Virais/antagonistas & inibidores , Adulto Jovem
9.
J Antimicrob Chemother ; 74(7): 1894-1903, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30891606

RESUMO

OBJECTIVES: To identify the transporters involved in renal elimination of relebactam, and to assess the potential of relebactam as a perpetrator or victim of drug-drug interactions (DDIs) for major drug transporters. METHODS: A series of bidirectional transport, uptake and inhibition studies were conducted in vitro using transfected cell lines and membrane vesicles. The inhibitory effects of relebactam on major drug transporters, as well as the inhibitory effects of commonly used antibiotics/antifungals on organic anion transporter (OAT) 3-mediated uptake of relebactam, were assessed. RESULTS: Relebactam was shown to be a substrate of OAT3, OAT4, and multidrug and toxin extrusion (MATE) proteins MATE1 and MATE2K. Relebactam did not show profound inhibition across a panel of transporters, including organic anion-transporting polypeptides 1B1 and 1B3, OAT1, OAT3, organic cation transporter 2, MATE1, MATE2K, breast cancer resistance protein, multidrug resistance protein 1 and the bile salt export pump. Among the antibiotics/antifungals assessed for potential DDIs, probenecid demonstrated the most potent in vitro inhibition of relebactam uptake; however, such in vitro data did not translate into clinically relevant DDIs, suggesting that relebactam can be co-administered with OAT inhibitors, such as probenecid. CONCLUSIONS: Overall, relebactam has low potential to be a victim or perpetrator of DDIs with major drug transporters.


Assuntos
Compostos Azabicíclicos/farmacocinética , Transporte Biológico , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Inibidores de beta-Lactamases/farmacocinética , Animais , Linhagem Celular , Vesículas Extracelulares , Humanos , Modelos Biológicos
10.
Drug Metab Dispos ; 47(4): 350-357, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622164

RESUMO

Suspended (SH), plated (PH), and sandwich-cultured hepatocytes (SCH) are commonly used models to predict in vivo transporter-mediated hepatic uptake (SH or PH) or biliary (SCH) clearance of drugs. When doing so, the total and the plasma membrane abundance (PMA) of transporter are assumed not to differ between hepatocytes and liver tissue (LT). This assumption has never been tested. In this study, we tested this assumption by measuring the total and PMA of the transporters in human hepatocyte models versus LT (total only) from which they were isolated. Total abundance of OATP1B1/2B1/1B3, OCT1, and OAT2 was not significantly different between the hepatocytes and LT. The same was true for the PMA of these transporters across the hepatocyte models. In contrast, total abundance of the sinusoidal efflux transporter, MRP3, and the canalicular efflux transporters, MRP2 and P-gp, was significantly greater (P < 0.05) in SCH versus LT. Of the transporters tested, only the percentage of PMA of OATP1B1, P-gp, and MRP3, in SCH (82.8% ± 7.3%, 57.5% ± 10.9%, 69.3% ± 5.7%) was significantly greater (P < 0.05) than in SH (73.3% ± 6.4%, 27.4% ± 6.4%, 53.6% ± 4.1%). If the transporters measured in the plasma membrane are functional and the PMA in SH is representative of that in LT, these data suggest that SH, PH, and SCH will result in equal prediction of hepatic uptake clearance of drugs mediated by the transporters tested above. However, SCH will predict higher sinusoidal efflux and biliary clearance of drugs if the change in PMA of these transporters is not taken into consideration.


Assuntos
Biotinilação/fisiologia , Membrana Celular/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/fisiologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Proteômica/métodos
11.
Drug Metab Dispos ; 46(2): 189-196, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29138286

RESUMO

Protein expression of major hepatobiliary drug transporters (NTCP, OATPs, OCT1, BSEP, BCRP, MATE1, MRPs, and P-gp) in cancerous (C, n = 8) and adjacent noncancerous (NC, n = 33) liver tissues obtained from patients with chronic hepatitis C with hepatocellular carcinoma (HCV-HCC) were quantified by LC-MS/MS proteomics. Herein, we compare our results with our previous data from noninfected, noncirrhotic (control, n = 36) and HCV-cirrhotic (n = 30) livers. The amount of membrane protein yielded from NC and C HCV-HCC tissues decreased (31%, 67%) relative to control livers. In comparison with control livers, with the exception of NTCP, MRP2, and MATE1, transporter expression decreased in NC (38%-76%) and C (56%-96%) HCV-HCC tissues. In NC HCV-HCC tissues, NTCP expression increased (113%), MATE1 expression decreased (58%), and MRP2 expression was unchanged relative to control livers. In C HCV-HCC tissues, NTCP and MRP2 expression decreased (63%, 56%) and MATE1 expression was unchanged relative to control livers. Compared with HCV-cirrhotic livers, aside from NTCP, OCT1, BSEP, and MRP2, transporter expression decreased in NC (41%-71%) and C (54%-89%) HCV-HCC tissues. In NC HCV-HCC tissues, NTCP and MRP2 expression increased (362%, 142%), whereas OCT1 and BSEP expression was unchanged. In C HCV-HCC tissues, OCT1 and BSEP expression decreased (90%, 80%) relative to HCV-cirrhotic livers, whereas NTCP and MRP2 expression was unchanged. Expression of OATP2B1, BSEP, MRP2, and MRP3 decreased (56%-72%) in C HCV-HCC tissues in comparison with matched NC tissues (n = 8), but the expression of other transporters was unchanged. These data will be helpful in the future to predict transporter-mediated hepatocellular drug concentrations in patients with HCV-HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatite C Crônica/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
12.
Drug Metab Dispos ; 46(7): 943-952, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29695616

RESUMO

To predict the impact of liver cirrhosis on hepatic drug clearance using physiologically based pharmacokinetic (PBPK) modeling, we compared the protein abundance of various phase 1 and phase 2 drug-metabolizing enzymes (DMEs) in S9 fractions of alcoholic (n = 27) or hepatitis C (HCV, n = 30) cirrhotic versus noncirrhotic (control) livers (n = 25). The S9 total protein content was significantly lower in alcoholic or HCV cirrhotic versus control livers (i.e., 38.3 ± 8.3, 32.3 ± 12.8, vs. 51.1 ± 20.7 mg/g liver, respectively). In general, alcoholic cirrhosis was associated with a larger decrease in the DME abundance than HCV cirrhosis; however, only the abundance of UGT1A4, alcohol dehydrogenase (ADH)1A, and ADH1B was significantly lower in alcoholic versus HCV cirrhotic livers. When normalized to per gram of tissue, the abundance of nine DMEs (UGT1A6, UGT1A4, CYP3A4, UGT2B7, CYP1A2, ADH1A, ADH1B, aldehyde oxidase (AOX)1, and carboxylesterase (CES)1) in alcoholic cirrhosis and five DMEs (UGT1A6, UGT1A4, CYP3A4, UGT2B7, and CYP1A2) in HCV cirrhosis was <25% of that in control livers. The abundance of most DMEs in cirrhotic livers was 25% to 50% of control livers. CES2 abundance was not affected by cirrhosis. Integration of UGT2B7 abundance in cirrhotic livers into the liver cirrhosis (Child Pugh C) model of Simcyp improved the prediction of zidovudine and morphine PK in subjects with Child Pugh C liver cirrhosis. These data demonstrate that protein abundance data, combined with PBPK modeling and simulation, can be a powerful tool to predict drug disposition in special populations.


Assuntos
Hepatite C/metabolismo , Inativação Metabólica/fisiologia , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Adulto , Idoso , Álcool Desidrogenase/metabolismo , Alcoólicos , Carboxilesterase/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Morfina/farmacocinética , Proteômica/métodos , Adulto Jovem , Zidovudina/farmacocinética
13.
Mol Pharmacol ; 89(5): 492-504, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26893303

RESUMO

Breast cancer resistance protein (BCRP) is expressed in various tissues, such as the gut, liver, kidney and blood brain barrier (BBB), where it mediates the unidirectional transport of substrates to the apical/luminal side of polarized cells. Thereby BCRP acts as an efflux pump, mediating the elimination or restricting the entry of endogenous compounds or xenobiotics into tissues and it plays important roles in drug disposition, efficacy and safety. Bcrp knockout mice (Bcrp(-/-)) have been used widely to study the role of this transporter in limiting intestinal absorption and brain penetration of substrate compounds. Here we describe the first generation and characterization of a mouse line humanized for BCRP (hBCRP), in which the mouse coding sequence from the start to stop codon was replaced with the corresponding human genomic region, such that the human transporter is expressed under control of the murineBcrppromoter. We demonstrate robust human and loss of mouse BCRP/Bcrp mRNA and protein expression in the hBCRP mice and the absence of major compensatory changes in the expression of other genes involved in drug metabolism and disposition. Pharmacokinetic and brain distribution studies with several BCRP probe substrates confirmed the functional activity of the human transporter in these mice. Furthermore, we provide practical examples for the use of hBCRP mice to study drug-drug interactions (DDIs). The hBCRP mouse is a promising model to study the in vivo role of human BCRP in limiting absorption and BBB penetration of substrate compounds and to investigate clinically relevant DDIs involving BCRP.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Xenobióticos/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Disponibilidade Biológica , Biotransformação/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Humanos , Absorção Intestinal/efeitos dos fármacos , Masculino , Moduladores de Transporte de Membrana/sangue , Moduladores de Transporte de Membrana/metabolismo , Moduladores de Transporte de Membrana/farmacocinética , Moduladores de Transporte de Membrana/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Xenobióticos/sangue , Xenobióticos/metabolismo , Xenobióticos/farmacologia
14.
Drug Metab Dispos ; 44(9): 1498-509, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26825641

RESUMO

In humans, creatinine is formed by a multistep process in liver and muscle and eliminated via the kidney by a combination of glomerular filtration and active transport. Based on current evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally localized organic cation transporter 2 (OCT2) and the organic anion transporter 2, and effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1 (MATE1) and MATE2K. Drug-induced elevation of serum creatinine (SCr) and/or reduced creatinine renal clearance is routinely used as a marker for acute kidney injury. Interpretation of elevated SCr can be complex, because such increases can be reversible and explained by inhibition of renal transporters involved in active secretion of creatinine or other secondary factors, such as diet and disease state. Distinction between these possibilities is important from a drug development perspective, as increases in SCr can result in the termination of otherwise efficacious drug candidates. In this review, we discuss the challenges associated with using creatinine as a marker for kidney damage. Furthermore, to evaluate whether reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition data, an in-depth in vitro-in vivo correlation (IVIVC) analysis was conducted for 16 drugs with in-house and literature in vitro transporter inhibition data for OCT2, MATE1, and MATE2K, as well as total and unbound maximum plasma concentration (Cmax and Cmax,u) data measured in the clinic.


Assuntos
Creatinina/sangue , Desenho de Fármacos , Rim/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Biomarcadores/metabolismo , Humanos , Testes de Função Renal , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo
15.
Drug Metab Dispos ; 44(11): 1752-1758, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27543206

RESUMO

Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available. Therefore, using quantitative targeted proteomics, we compared our previous data on noncirrhotic control livers (n = 36) with the protein expression of major hepatobiliary transporters, breast cancer resistance protein (BCRP), bile salt export pump (BSEP), multidrug and toxin extrusion protein 1 (MATE1), multidrug resistance-associated protein (MRP)2, MRP3, MRP4, sodium taurocholate-cotransporting polypeptide (NTCP), organic anion-transporting polypeptides (OATP)1B1, 1B3, 2B1, organic cation transporter 1 (OCT1), and P-glycoprotein (P-gp) in alcoholic (n = 27) and hepatitis C cirrhosis (n = 30) livers. Compared with control livers, the yield of membrane protein from alcoholic and hepatitis C cirrhosis livers was significantly reduced by 56 and 67%, respectively. The impact of liver cirrhosis on transporter protein expression was transporter-dependent. Generally, reduced protein expression (per gram of liver) was found in alcoholic cirrhosis livers versus control livers, with the exception that the expression of MRP3 was increased, whereas no change was observed for MATE1, MRP2, OATP2B1, and P-gp. In contrast, the impact of hepatitis C cirrhosis on protein expression of transporters (per gram of liver) was diverse, showing an increase (MATE1), decrease (BSEP, MRP2, NTCP, OATP1B3, OCT1, and P-gp), or no change (BCRP, MRP3, OATP1B1, and 2B1). The expression of hepatobiliary transporter protein differed in different diseases (alcoholic versus hepatitis C cirrhosis). Finally, incorporation of protein expression of OATP1B1 in alcoholic cirrhosis into the Simcyp physiologically based pharmacokinetics cirrhosis module improved prediction of the disposition of repaglinide in liver cirrhosis patients. These transporter expression data will be useful in the future to predict transporter-mediated drug disposition in liver cirrhosis patients.


Assuntos
Etanol/metabolismo , Hepatite C/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma/metabolismo , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Proteômica/métodos
16.
Drug Metab Dispos ; 43(3): 367-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534768

RESUMO

We quantified, by liquid chromatography tandem mass spectrometry, transporter protein expression of BSEP, MATE1, MRP3, MRP4, NTCP, and OCT1 in our human liver bank (n = 55) and determined the relationship between protein expression and sex, age and genotype. These data complement our previous work in the same liver bank where we quantified the protein expression of OATPs, BCRP, MDR1, and MRP2. In addition, we quantified and compared the interspecies differences in expression of the hepatobiliary transporters, corresponding to the above human transporters, in liver tissue and hepatocytes of male beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Wistar rats. In all the species, the sinusoidal OATPs/Oatps were the most abundant hepatic transporters. However, there were notable interspecies differences in the relative abundance of the remaining transporters. For example, the next most abundant transporter in humans and monkeys was OCT1/Oct1, whereas it was Mrp2 and Ntcp in dogs/Wistar rats and Sprague-Dawley rats, respectively. In contrast, the protein expression of the efflux transporters BCRP/Bcrp, MDR1/Mdr1, MRP3/Mrp3, MRP4/Mrp4, and MATE1/Mate1 was much lower across all the species. For most transporters, the expression in the liver tissues was comparable to that in the unplated cryopreserved hepatocytes. These data on human liver transporter protein expression complete the picture of the expression of major human hepatobiliary transporters important in drug disposition and toxicity. In addition, the data on expression of the corresponding hepatobiliary transporters in preclinical species will be helpful in interpreting and extrapolating pharmacokinetic, pharmacological, and toxicological results from preclinical studies to humans.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma/metabolismo , Adolescente , Adulto , Idoso , Animais , Criança , Criopreservação/métodos , Cães , Feminino , Haplorrinos , Humanos , Macaca fascicularis , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Adulto Jovem
17.
Drug Metab Dispos ; 43(6): 851-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25813937

RESUMO

Inhibition of hepatic transporters such as organic anion transporting polypeptides (OATPs) 1B can cause drug-drug interactions (DDIs). Determining the impact of perpetrator drugs on the plasma exposure of endogenous substrates for OATP1B could be valuable to assess the risk for DDIs early in drug development. As OATP1B orthologs are well conserved between human and monkey, we assessed in cynomolgus monkeys the endogenous OATP1B substrates that are potentially suitable to assess DDI risk in humans. The effect of rifampin (RIF), a potent inhibitor for OATP1B, on plasma exposure of endogenous substrates of hepatic transporters was measured. From the 18 biomarkers tested, RIF (18 mg/kg, oral) caused significant elevation of plasma unconjugated and conjugated bilirubin, which may be attributed to inhibition of cOATP1B1 and cOATP1B3 based on in vitro to in vivo extrapolation analysis. To further evaluate whether cynomolgus monkeys are a suitable translational model to study OATP1B-mediated DDIs, we determined the inhibitory effect of RIF on in vitro transport and pharmacokinetics of rosuvastatin (RSV) and atorvastatin (ATV). RIF strongly inhibited the uptake of RSV and ATV by cOATP1B1 and cOATP1B3 in vitro. In agreement with clinical observations, RIF (18 mg/kg, oral) significantly decreased plasma clearance and increased the area under the plasma concentration curve (AUC) of intravenously administered RSV by 2.8- and 2.7-fold, and increased the AUC and maximum plasma concentration of orally administered RSV by 6- and 10.3-fold, respectively. In contrast to clinical findings, RIF did not significantly increase plasma exposure of either intravenous or orally administered ATV, indicating species differences in the rate-limiting elimination pathways.


Assuntos
Indutores das Enzimas do Citocromo P-450/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Moduladores de Transporte de Membrana/efeitos adversos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Biológicos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Administração Oral , Animais , Bilirrubina/análogos & derivados , Bilirrubina/sangue , Bilirrubina/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Indutores das Enzimas do Citocromo P-450/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Células HEK293 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Injeções Intravenosas , Macaca fascicularis , Masculino , Moduladores de Transporte de Membrana/administração & dosagem , Taxa de Depuração Metabólica , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Distribuição Aleatória , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie
18.
Antimicrob Agents Chemother ; 58(3): 1294-301, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24295974

RESUMO

Raltegravir (RAL) is a human immunodeficiency virus type 1 (HIV-1) integrase inhibitor approved to treat HIV infection in adults in combination with other antiretrovirals. The potential of RAL to cause transporter-related drug-drug interactions (DDIs) as an inhibitor has not been well described to date. In this study, a series of in vitro experiments were conducted to assess the inhibitory effects of RAL on major human drug transporters known to be involved in clinically relevant drug interactions, including hepatic and renal uptake transporters and efflux transporters. For hepatic uptake transporters, RAL showed no inhibition of organic anion-transporting polypeptide 1B1 (OATP1B1), weak inhibition of OATP1B3 (40% inhibition at 100 µM), and no inhibition of organic cation transporter 1 (OCT1). Studies of renal uptake transporters showed that RAL inhibited organic anion transporters 1 and 3 (OAT1 and OAT3) with 50% inhibitory concentrations (IC50s) (108 µM and 18.8 µM, respectively) well above the maximum concentration of drug in plasma (Cmax) at the clinical 400-mg dose and did not inhibit organic cation transporter 2 (OCT2). As for efflux transporters, RAL did not inhibit breast cancer resistance protein (BCRP) and showed weak inhibition of multidrug and toxin extrusion protein 1 (MATE1) (52% inhibition at 100 µM) and MATE2-K (29% inhibition at 100 µM). These studies indicate that at clinically relevant exposures, RAL does not inhibit or only weakly inhibits hepatic uptake transporters OATP1B1, OATP1B3, and OCT1, renal uptake transporters OCT2, OAT1, and OAT3, as well as efflux transporters BCRP, MATE1, and MATE2-K. The propensity for RAL to cause DDIs via inhibition of these transporters is therefore considered low.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Pirrolidinonas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Cães , Interações Medicamentosas , Humanos , Técnicas In Vitro , Transportador 1 de Ânion Orgânico Específico do Fígado , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/efeitos dos fármacos , Proteína 1 Transportadora de Ânions Orgânicos/efeitos dos fármacos , Transportadores de Ânions Orgânicos/efeitos dos fármacos , Transportadores de Ânions Orgânicos Sódio-Independentes/efeitos dos fármacos , Proteínas de Transporte de Cátions Orgânicos/efeitos dos fármacos , Transportador 1 de Cátions Orgânicos/efeitos dos fármacos , Transportador 2 de Cátion Orgânico , Raltegravir Potássico , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto
19.
Drug Metab Dispos ; 42(4): 650-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24346835

RESUMO

Recent analyses demonstrated that metabolites are unlikely to contribute significantly to clinical inhibition of cytochrome P450 (P450)-mediated drug metabolism, and that only ∼2% of this type of drug interaction could not be predicted from the parent drug alone. Due to generally increased polarity and decreased permeability, metabolites are less likely to interact with P450s, but their disposition is instead more likely to involve transporters. This commentary presents case studies illustrating the potential importance of transporters as determinants of metabolite disposition, and as sites of drug interactions, which may alter drug efficacy and safety. Many of these examples are hydrophilic phase II conjugates involved in enterohepatic cycling, where modulation of transporter-dependent disposition may alter pharmacokinetics/pharmacodynamics. The case studies suggest that characterization of metabolite disposition, toxicology, and pharmacology should not focus solely on metabolites with appreciable systemic exposure, but should take into consideration major excretory metabolites. A more thorough understanding of metabolite (phase I and II; circulating and excreted) transport properties during drug development may provide an improved understanding of complex drug-drug interactions (DDIs) that can alter drug and/or metabolite systemic and intracellular exposure. Knowledge and capability gaps remain in clinical translation of in vitro and animal data regarding metabolite disposition. To this end, useful experimental and modeling approaches are highlighted. Application of these tools may lead to a better understanding of metabolite victim and perpetrator DDI potential, and ultimately the establishment of approaches for prediction of pharmacodynamic and toxicodynamic consequences of metabolite transport modulation.


Assuntos
Proteínas de Transporte/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Descoberta de Drogas , Preparações Farmacêuticas/metabolismo , Interações Medicamentosas , Humanos , Modelos Biológicos , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/urina , Distribuição Tecidual
20.
Drug Metab Dispos ; 42(8): 1301-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24855184

RESUMO

Organic anion transporting polypeptide (Oatp) 1a/1b knockout and OATP1B1 and -1B3 humanized mouse models are promising tools for studying the roles of these transporters in drug disposition. Detailed characterization of these models will help to better understand their utility for predicting clinical outcomes. To advance this approach, we carried out a comprehensive analysis of these mouse lines by evaluating the compensatory changes in mRNA expression, quantifying the amounts of OATP1B1 and -1B3 protein by liquid chromatography-tandem mass spectrometry, and studying the active uptake in isolated hepatocytes and the pharmacokinetics of some prototypical substrates including statins. Major outcomes from these studies were 1) mostly moderate compensatory changes in only a few genes involved in drug metabolism and disposition, 2) a robust hepatic expression of OATP1B1 and -1B3 proteins in the respective humanized mouse models, and 3) functional activities of the human transporters in hepatocytes isolated from the humanized models with several substrates tested in vitro and with pravastatin in vivo. However, the expression of OATP1B1 and -1B3 in the humanized models did not significantly alter liver or plasma concentrations of rosuvastatin and pitavastatin compared with Oatp1a/1b knockout controls under the conditions used in our studies. Hence, although the humanized OATP1B1 and -1B3 mice showed in vitro and/or in vivo functional activity with some statins, further characterization of these models is required to define their potential use and limitations in the prediction of drug disposition and drug-drug interactions in humans.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Interações Medicamentosas/fisiologia , Fluorbenzenos/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/enzimologia , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Camundongos , Pravastatina/metabolismo , Pirimidinas/metabolismo , RNA Mensageiro/genética , Rosuvastatina Cálcica , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Sulfonamidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA