Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(1): 68-81, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36414405

RESUMO

Long-range synaptic connections define how information flows through neuronal networks. Here, we combined retrograde and anterograde trans-synaptic viruses to delineate areas that exert direct and indirect influence over the dorsal and ventral prefrontal cortex (PFC) of the rat (both sexes). Notably, retrograde tracing using pseudorabies virus (PRV) revealed that both dorsal and ventral areas of the PFC receive prominent disynaptic input from the dorsal CA3 (dCA3) region of the hippocampus. The PRV experiments also identified candidate anatomical relays for this disynaptic pathway, namely, the ventral hippocampus, lateral septum, thalamus, amygdala, and basal forebrain. To determine the viability of each of these relays, we performed three additional experiments. In the first, we injected the retrograde monosynaptic tracer Fluoro-Gold into the PFC and the anterograde monosynaptic tracer Fluoro-Ruby into the dCA3 to confirm the first-order connecting areas and revealed several potential relay regions between the PFC and dCA3. In the second, we combined PRV injection in the PFC with polysynaptic anterograde viral tracer (HSV-1) in the dCA3 to reveal colabeled connecting neurons, which were evident only in the ventral hippocampus. In the third, we combined retrograde adeno-associated virus (AAV) injections in the PFC with an anterograde AAV in the dCA3 to reveal anatomical relay neurons in the ventral hippocampus and dorsal lateral septum. Together, these findings reveal parallel disynaptic pathways from the dCA3 to the PFC, illuminating a new anatomical framework for understanding hippocampal-prefrontal interactions. We suggest that the representation of context and space may be a universal feature of prefrontal function.SIGNIFICANCE STATEMENT The known functions of the prefrontal cortex are shaped by input from multiple brain areas. We used transneuronal viral tracing to discover multiple prominent disynaptic pathways through which the dorsal hippocampus (specifically, the dorsal CA3) has the potential to shape the actions of the prefrontal cortex. The demonstration of neuronal relays in the ventral hippocampus and lateral septum presents a new foundation for understanding long-range influences over prefrontal interactions, including the specific contribution of the dorsal CA3 to prefrontal function.


Assuntos
Hipocampo , Córtex Pré-Frontal , Masculino , Feminino , Ratos , Animais , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo , Neurônios/fisiologia
2.
Hum Mol Genet ; 28(9): 1530-1547, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602030

RESUMO

Epilepsy, deafness, onychodystrophy, osteodystrophy and intellectual disability are associated with a spectrum of mutations of human TBC1D24. The mechanisms underlying TBC1D24-associated disorders and the functions of TBC1D24 are not well understood. Using CRISPR-Cas9 genome editing, we engineered a mouse with a premature translation stop codon equivalent to human S324Tfs*3, a recessive mutation of TBC1D24 associated with early infantile epileptic encephalopathy (EIEE). Homozygous S324Tfs*3 mice have normal auditory and vestibular functions but show an abrupt onset of spontaneous seizures at postnatal day 15 recapitulating human EIEE. The S324Tfs*3 variant is located in an alternatively spliced micro-exon encoding six perfectly conserved amino acids incorporated postnatally into TBC1D24 protein due to a micro-exon utilization switch. During embryonic and early postnatal development, S324Tfs*3 homozygotes produce predominantly the shorter wild-type TBC1D24 protein isoform that omits the micro-exon. S324Tfs*3 homozygotes show an abrupt onset of seizures at P15 that correlates with a developmental switch to utilization of the micro-exon. A mouse deficient for alternative splice factor SRRM3 impairs incorporation of the Tbc1d24 micro-exon. Wild-type Tbc1d24 mRNA is abundantly expressed in the hippocampus using RNAscope in situ hybridization. Immunogold electron microscopy using a TBC1D24-specific antibody revealed that TBC1D24 is associated with clathrin-coated vesicles and synapses of hippocampal neurons, suggesting a crucial role of TBC1D24 in vesicle trafficking important for neuronal signal transmission. This is the first characterization of a mouse model of human TBC1D24-associated EIEE that can now be used to screen for antiepileptogenic drugs ameliorating TBCID24 seizure disorders.


Assuntos
Proteínas Ativadoras de GTPase/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Fenótipo , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Alelos , Animais , Biomarcadores , Encéfalo/metabolismo , Análise Mutacional de DNA , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Loci Gênicos , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Cereb Cortex ; 27(2): 1501-1511, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26759481

RESUMO

In Alzheimer disease (AD), the accumulation of amyloid beta (Aß) begins decades before cognitive symptoms and progresses from intraneuronal material to extracellular plaques. To date, however, the precise mechanism by which the early buildup of Aß peptides leads to cognitive dysfunction remains unknown. Here, we investigate the impact of the early Aß accumulation on temporal and frontal lobe dysfunction. We compared the performance of McGill-R-Thy1-APP transgenic AD rats with wild-type littermate controls on a visual discrimination task using a touchscreen operant platform. Subsequently, we conducted studies to establish the biochemical and molecular basis for the behavioral alterations. It was found that the presence of intraneuronal Aß caused a severe associative learning deficit in the AD rats. This coincided with reduced nuclear translocation and genomic occupancy of the CREB co-activator, CRTC1, and decreased production of synaptic plasticity-associated transcripts Arc, c-fos, Egr1, and Bdnf. Thus, blockade of CRTC1-dependent gene expression in the early, preplaque phase of AD-like pathology provides a molecular basis for the cognitive deficits that figure so prominently in early AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Cognição/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/genética , Fatores de Transcrição/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Feminino , Interneurônios/metabolismo , Masculino , Neurônios/metabolismo , Ratos Transgênicos
4.
J Neurosci ; 35(33): 11751-60, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26290251

RESUMO

Reversal learning has been extensively studied across species as a task that indexes the ability to flexibly make and reverse deterministic stimulus-reward associations. Although various brain lesions have been found to affect performance on this task, the behavioral processes affected by these lesions have not yet been determined. This task includes at least two kinds of learning. First, subjects have to learn and reverse stimulus-reward associations in each block of trials. Second, subjects become more proficient at reversing choice preferences as they experience more reversals. We have developed a Bayesian approach to separately characterize these two learning processes. Reversal of choice behavior within each block is driven by a combination of evidence that a reversal has occurred, and a prior belief in reversals that evolves with experience across blocks. We applied the approach to behavior obtained from 89 macaques, comprising 12 lesion groups and a control group. We found that animals from all of the groups reversed more quickly as they experienced more reversals, and correspondingly they updated their prior beliefs about reversals at the same rate. However, the initial values of the priors that the various groups of animals brought to the task differed significantly, and it was these initial priors that led to the differences in behavior. Thus, by taking a Bayesian approach we find that variability in reversal-learning performance attributable to different neural systems is primarily driven by different prior beliefs about reversals that each group brings to the task. SIGNIFICANCE STATEMENT: The ability to use prior knowledge to adapt choice behavior is critical for flexible decision making. Reversal learning is often studied as a form of flexible decision making. However, prior studies have not identified which brain regions are important for the formation and use of prior beliefs to guide choice behavior. Here we develop a Bayesian approach that formally characterizes learning set as a concept, and we show that, in macaque monkeys, the amygdala and medial prefrontal cortex have a role in establishing an initial belief about the stability of the reward environment.


Assuntos
Comportamento de Escolha/fisiologia , Lobo Frontal/fisiologia , Memória/fisiologia , Rede Nervosa/fisiologia , Reversão de Aprendizagem/fisiologia , Lobo Temporal/fisiologia , Animais , Teorema de Bayes , Mapeamento Encefálico , Feminino , Macaca mulatta , Masculino , Plasticidade Neuronal/fisiologia , Recompensa
5.
J Neurosci ; 34(46): 15340-6, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392501

RESUMO

The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.


Assuntos
Comportamento/fisiologia , Cognição/fisiologia , Tálamo/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Humanos , Aprendizagem/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Tálamo/citologia
6.
Eur J Neurosci ; 42(5): 2224-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26121594

RESUMO

Human cognition depends upon the capacity to make decisions in the present that bear upon outcomes in the future. The nucleus accumbens, a recipient of direct projections from both the hippocampus and orbitofrontal cortex, is known to contribute to these aspects of decision-making. Here we demonstrate that interaction of the nucleus accumbens with the hippocampus, but not the orbitofrontal cortex, is critical in shaping decisions that involve time trade-offs. Compared with controls, rats with a disrupted hippocampal-accumbens interaction were strongly biased toward choosing stimuli that led to small and immediate food rewards over large and delayed ones. We show that this pattern of behavior cannot be ascribed to the impaired representation of stimulus value, the incapacity to wait, or a general disruption of decision-making. These results identify a hippocampal-accumbens circuit that may underlie a range of problems in which daily decisions are marked by a shift toward immediate gratification.


Assuntos
Tomada de Decisões/fisiologia , Hipocampo/fisiologia , Núcleo Accumbens/fisiologia , Percepção do Tempo/fisiologia , Animais , Alimentos , Lobo Frontal/fisiologia , Lobo Frontal/fisiopatologia , Hipocampo/fisiopatologia , Masculino , Modelos Animais , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Núcleo Accumbens/fisiopatologia , Estimulação Luminosa , Probabilidade , Ratos , Ratos Long-Evans , Recompensa
7.
J Neurosci ; 33(19): 8494-503, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23658186

RESUMO

Electrophysiological and lesion studies in rodents have shown that the dorsal (septal) and ventral (temporal) segments of the hippocampus have functional specializations that can be understood in terms of their anatomical connections with distinct brain areas. Here we explore the circuitry associated with the hippocampus using the pseudorabies virus-Bartha strain (PRV-Bartha) tracer in the rat to examine both direct (first-order) and indirect (second-order) projections to the hippocampus. Based on analysis of PRV-Bartha infection density, we demonstrate two parallel pathways from the limbic cortex to the hippocampus. A dorsal "spatial cognition" pathway provides disynaptic input from the retrosplenial, anterior cingulate, and orbital cortex to the dorsal hippocampus, with potential synaptic relays in the anterior thalamic nuclei and dorsolateral entorhinal cortex. A ventral "executive control" pathway provides disynaptic input from the prelimbic, infralimbic, and orbital cortex to the ventral hippocampus, with potential synaptic relays in the midline thalamic nuclei and the rostral caudomedial entorhinal cortex. These data suggest a new anatomical framework for understanding the functional interactions between the cortex and hippocampus, especially in cognitive disorders that involve both structures, such as frontotemporal dementia.


Assuntos
Hipocampo/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia , Proteínas Virais/metabolismo , Animais , Lateralidade Funcional , Herpesvirus Suídeo 1/metabolismo , Hipocampo/virologia , Masculino , Vias Neurais/virologia , Córtex Pré-Frontal/virologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
8.
Cereb Cortex ; 23(12): 2884-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22944530

RESUMO

Although several studies have emphasized the role of the anterior cingulate cortex (ACC) in associating actions with reward value, its role in guiding choices on the basis of changes in reward value has not been assessed. Accordingly, we compared rhesus monkeys with ACC lesions and controls on object- and action-based reinforcer devaluation tasks. Monkeys were required to associate an object or an action with one of two reward outcomes, and we assessed the monkey's shift in choices of objects or actions after changes in the value of 1 outcome. No group differences emerged on either task. For comparison, we tested the same monkeys on their ability to make choices guided by reward contingency in object- and action-based reversal learning tasks. Monkeys with ACC lesions were impaired in using rewarded trials to sustain the selection of the correct object during object reversal learning. They were also impaired in using errors to guide choices in action reversal learning. These data indicate that the role of the ACC is not restricted to linking specific actions with reward outcomes, as previously reported. Instead, the data suggest a more general role for the ACC in using information about reward and nonreward to sustain effective choice behavior.


Assuntos
Comportamento de Escolha/fisiologia , Giro do Cíngulo/fisiologia , Reversão de Aprendizagem/fisiologia , Recompensa , Animais , Macaca mulatta , Masculino , Reforço Psicológico
9.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38766011

RESUMO

BACKGROUND: Life stress modulates decision making, particularly in the face of risk, in some cases prompting vulnerable populations to make suboptimal, life-altering choices. In the brain, stress is known to alter the extracellular release of catecholamines in structures such as basolateral amygdala (BLA) and nucleus accumbens (NAc), but the relationship between catecholamines and decision-making behavior under stress has not been systemically explored. METHODS: We developed an operant touchscreen decision-making task for rats comprising elements of loss aversion and risk seeking behavior. Rats were first injected systemically with an adrenergic alpha 2A-receptor agonist (guanfacine) and antagonist (yohimbine), as well as a partial inverse GABAA agonist, FG 7142, known to induce anxiety and stress related physiological responses in a variety of species, including humans. We then used fiber photometry to monitor NE in the basolateral amygdala (BLA), and DA activity in the nucleus accumbens (NAc) while animals engaged in decision-making and following systemic injections of FG 7142 and yohimbine. RESULTS: Neither yohimbine nor guanfacine had any impact on decision making strategy but altered motivational state with yohimbine making the animal almost insensitive to the reward outcome. The pharmacological induction of stress with FG 7142 biased the rats decisions towards safety, but this bias shifted toward risk when co-treated with yohimbine. In the BLA and NAc, the FG 7142 altered catecholamine release, with systemic yohimbine producing opposing effects on NE and DA release. CONCLUSIONS: Stress induced changes in catecholamine release in the BLA and NAc can directly influence loss sensitivity, decisions and motivation, which can be modulated by the alpha 2A adrenoceptor antagonist, yohimbine.

10.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766181

RESUMO

The recent upsurge in the use of common marmosets (Callithrix jacchus) as a desirable model for high priority biomedical research has challenged local and global suppliers struggling to provide sufficient numbers of marmosets for large scale projects. Scientific research laboratories are increasingly establishing institutional breeding colonies, in part to combat the resulting shortage and high cost of commercially available animals, and in part to have maximum control over research lines involving reproduction and development. For such laboratories, efficient marmoset breeding can be challenging and time consuming. Random male/female pairings are often unsuccessful, with intervals of several months before attempting alternate pairings. Here we address this challenge through a behavioral task that promotes self-directed female selection of potential mates to increase the efficiency of breeding in captive marmosets. We created a partner preference test ('love maze') in which nulliparous females (n=12) had the opportunity to select between two eligible males (n=23) at a time, in a forced choice test. In this test, both males usually displayed sexual solicitations. However, the female would clearly indicate her preference for one. Most commonly, the female actively ignored the non-preferred male and directed overt prosocial behaviors (e.g. proceptive tongue-flicking, approach and grooming) to the preferred male. Moreover, once a male was selected in this context, the female would continue to prefer him over other males in three consecutive testing sessions. Compared with random pairings, this directed female choice showed a 2.5-fold improvement in breeding within 90 days compared to random pairings. This cost-effective and straightforward pairing practice can be used to enhance breeding efficiency in both small and large marmoset colonies.

11.
bioRxiv ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38529485

RESUMO

The social dynamics of vocal behavior has major implications for social development in humans. We asked whether early life damage to the anterior cingulate cortex (ACC), which is closely associated with socioemotional regulation more broadly, impacts the normal development of vocal expression. The common marmoset provides a unique opportunity to study the developmental trajectory of vocal behavior, and to track the consequences of early brain damage on aspects of social vocalizations. We created ACC lesions in neonatal marmosets and compared their pattern of vocalization to that of age-matched controls throughout the first 6 weeks of life. We found that while early life ACC lesions had little influence on the production of vocal calls, developmental changes to the quality of social contact calls and their associated syntactical and acoustic characteristics were compromised. These animals made fewer social contact calls, and when they did, they were short, loud and monotonic. We further determined that damage to ACC in infancy results in a permanent alteration in downstream brain areas known to be involved in social vocalizations, such as the amygdala and periaqueductal gray. Namely, in the adult, these structures exhibited diminished GABA-immunoreactivity relative to control animals, likely reflecting disruption of the normal inhibitory balance following ACC deafferentation. Together, these data indicate that the normal development of social vocal behavior depends on the ACC and its interaction with other areas in the vocal network during early life.

12.
Sci Adv ; 10(13): eadh9251, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552022

RESUMO

The ventromedial prefrontal cortex (vmPFC) is a part of the limbic system engaged in the regulation of social, emotional, and cognitive states, which are characteristically impaired in disorders of the brain such as schizophrenia and depression. Here, we show that intrinsically photosensitive retinal ganglion cells (ipRGCs) modulate, through light, the integrity, activity, and function of the vmPFC. This regulatory role, which is independent of circadian and mood alterations, is mediated by an ipRGC-thalamic-corticolimbic pathway. Lack of ipRGC signaling in mice causes dendritic degeneration, dysregulation of genes involved in synaptic plasticity, and depressed neuronal activity in the vmPFC. These alterations primarily undermine the ability of the vmPFC to regulate emotions. Our discovery provides a potential light-dependent mechanism for certain PFC-centric disorders in humans.


Assuntos
Encéfalo , Células Ganglionares da Retina , Humanos , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Córtex Pré-Frontal , Transdução de Sinais , Luz
13.
J Neurosci ; 32(32): 10915-24, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875926

RESUMO

We investigated the interdependent function of the ventral hippocampus (vHC) and ventral prefrontal cortex (vPFC) in visuospatial attention and inhibitory control using a disconnection lesion approach. Rats were trained, and several aspects of their cognitive performance tested on the 5-choice reaction time task. The animals were prepared with unilateral lesions of both the vPFC and vHC, either in the same hemisphere ("ipsilateral") or in opposite hemispheres ("disconnection"). The disconnection lesion led to both impulsive and compulsive behavior. This deficit is reminiscent of the effects of either bilateral vPFC or bilateral vHC lesions on the same task and is thought to reflect the bihemispheric disruption of the hippocampal-prefrontal circuit. With ipsilateral lesions, behavioral deficits were transient or absent altogether, suggesting that the intact hemisphere was able to exert near normal levels of behavioral control. These behavioral effects were observed in the absence of any changes to visual attention, speed of response, or general motivation. This study provides evidence that optimal inhibitory control of behavior draws upon the functional interaction between the vHC and vPFC.


Assuntos
Comportamento de Escolha/fisiologia , Hipocampo/fisiologia , Inibição Psicológica , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Análise de Variância , Animais , Agonistas de Aminoácidos Excitatórios/toxicidade , Privação de Alimentos , Hipocampo/lesões , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , N-Metilaspartato/toxicidade , Córtex Pré-Frontal/lesões , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans , Tempo de Reação/fisiologia , Fatores de Tempo
14.
Eur J Neurosci ; 37(4): 640-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23190048

RESUMO

In this study, we examined how risk and delay influence rats' decision-making, and the role of the ventral hippocampus (VHC) and orbitofrontal cortex (OFC) in the valuation of these two factors. We used a touchscreen testing method in which rats with VHC lesions, OFC lesions and sham control surgery made choices in two decision-making tasks. In the delay discounting task, rats chose between two visual stimuli, one of which indicated a small, immediate reward, and the other of which indicated a large, delayed reward. In the probability discounting task, two stimuli indicated, instead, a small, certain reward or a large, uncertain reward. The two lesion groups showed a double dissociation with respect to the two tasks. Rats with VHC lesions were intolerant of delay, and were strongly biased towards the small, immediate reward. However, the same rats were indistinguishable from sham controls in the probability discounting task. The opposite pattern was observed for rats with OFC lesions; they performed normally in the delay discounting task, but showed a reduced tolerance for uncertainty as compared with sham-operated controls. These data support the conclusion that the VHC and OFC contribute differentially to decision-making that involves delayed or uncertain outcomes. This provides a means for understanding the neural basis of a range of neurological and psychiatric patients who show impaired decision-making and executive dysfunction.


Assuntos
Tomada de Decisões/fisiologia , Lobo Frontal/fisiologia , Hipocampo/fisiologia , Incerteza , Animais , Masculino , Ratos , Ratos Long-Evans , Recompensa
15.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37808740

RESUMO

This manuscript has been withdrawn by bioRxiv following a formal request by the NIH Intramural Research Integrity Office owing to lack of author consent.

16.
Neurooncol Adv ; 5(1): vdad108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781088

RESUMO

Background: Hypersomnolence is a common and disruptive side effect of cranial radiotherapy and is associated with fatigue and disturbances in mood and cognition in primary brain tumor (PBT) patients. The biological underpinnings of this effect are not understood. Our laboratory has previously found that the presence of a single nucleotide polymorphism (rs934945, G-E mutation) in the PERIOD2 (PER2) clock gene was associated with a decreased likelihood of fatigue in PBT patients. Here, we aim to understand the effects of PER2 polymorphism on radiation susceptibility within a murine model of cranial-irradiation-induced hypersomnolence (C-RIH). Methods: Male and female transgenic mice were generated using CRISPR-Cas9, replacing the endogenous mouse PER2:CRY1 binding domain with its human isoform with (hE1244 KI) or without the SNP rs934945 (hG1244 KI). Activity and sleep were monitored continuously 10 days before and after cranial irradiation (whole brain, 15Gy, single fraction). Behavioral assessments measuring anxiety, depression, and working memory were used to assess mood and cognitive changes 2 months postradiation. Results: During their active phase, hE1244 knock-ins (KIs) had less radiation-induced suppression of activity relative to hG1244 KIs and female hE1244 KIs saw a reduction of hypersomnolence over 10 days. hE1244 KIs displayed less anxiety behavior and were more ambulatory within all behavioral tests. Conclusions: The PER2 rs934945 polymorphism had long-lasting behavioral effects associated with radiation toxicity, particularly in sleep in females and the activity of all animals. Our findings shed light on biological mechanisms underlying C-RIH.

17.
Nat Commun ; 13(1): 6702, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335105

RESUMO

Diffusion magnetic resonance imaging (dMRI) is commonly used to assess the tissue and cellular substructure of the human brain. In the white matter, myelinated axons are the principal neural elements that shape dMRI through the restriction of water diffusion; however, in the gray matter the relative contributions of myelinated axons and other tissue features to dMRI are poorly understood. Here we investigate the determinants of diffusion in the cerebral cortex. Specifically, we ask whether myelinated axons significantly shape dMRI fractional anisotropy (dMRI-FA), a measure commonly used to characterize tissue properties in humans. We compared ultra-high resolution ex vivo dMRI data from the brain of a marmoset monkey with both myelin- and Nissl-stained histological sections obtained from the same brain after scanning. We found that the dMRI-FA did not match the spatial distribution of myelin in the gray matter. Instead dMRI-FA was more closely related to the anisotropy of stained tissue features, most prominently those revealed by Nissl staining and to a lesser extent those revealed by myelin staining. Our results suggest that unmyelinated neurites such as large caliber apical dendrites are the primary features shaping dMRI measures in the cerebral cortex.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Anisotropia , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Córtex Cerebral/diagnóstico por imagem , Encéfalo/patologia
18.
Nat Neurosci ; 24(10): 1429-1440, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34413514

RESUMO

The appropriate selection of passive and active defensive behaviors in threatening situations is essential for survival. Previous studies have shown that passive defensive responses depend on activity of the central nucleus of the amygdala (CeA), whereas active ones primarily rely on the nucleus accumbens (NAc). However, the mechanisms underlying flexible switching between these two types of responses remain unknown. Here we show in mice that the paraventricular thalamus (PVT) mediates the selection of defensive behaviors through its interaction with the CeA and the NAc. We show that the PVT-CeA pathway drives conditioned freezing responses, whereas the PVT-NAc pathway is inhibited during freezing and, instead, signals active avoidance events. Optogenetic manipulations revealed that activity in the PVT-CeA or PVT-NAc pathway biases behavior toward the selection of passive or active defensive responses, respectively. These findings provide evidence that the PVT mediates flexible switching between opposing defensive behaviors.


Assuntos
Comportamento Animal/fisiologia , Vias Neurais/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Animais , Aprendizagem da Esquiva , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
19.
Curr Res Neurobiol ; 2: 100005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36246503

RESUMO

Welcome to Current Research in Neurobiology (CRNEUR), the gold open access, sibling journal to Current Opinion in Neurobiology, a journal for timely original research in neuroscience. At its very core, CRNEUR is a journal for creativity and innovation in science and publishing. As a journal, we ambitiously aim for CRNEUR to be a vehicle for what many of us envisioned an academic journal could be. Empowered by our commitment to fairness and transparency-to hold ourselves and others to a higher standard-here we describe our ambitions for innovation going forward. We need your help in this process and welcome your views via this survey (https://www.surveymonkey.co.uk/r/5LHWTML) and on social media (to start or join a discussion please use the hashtag #CRNEUR).

20.
J Psychopharmacol ; 34(12): 1371-1381, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103560

RESUMO

BACKGROUND: Thalamic subregions mediate various cognitive functions, including attention, inhibitory response control and decision making. Such neuronal activity is modulated by cholinergic thalamic afferents and deterioration of such modulatory signaling has been theorised to contribute to cognitive decline in neurodegenerative disorders. However, the thalamic subnuclei and cholinergic receptors involved in cognitive functioning remain largely unknown. AIMS: We investigated whether muscarinic or nicotinic receptors in the mediodorsal thalamus and anterior thalamus contribute to rats' performance in the five-choice serial reaction time task, which measures sustained visual attention and impulsive action. METHODS: Male Long-Evans rats were trained in the five-choice serial reaction time task then surgically implanted with guide cannulae targeting either the mediodorsal thalamus or anterior thalamus. Reversible inactivation of either the mediodorsal thalamus or anterior thalamus were achieved with infusions of the γ-aminobutyric acid-ergic agonists muscimol and baclofen prior to behavioural assessment. To investigate cholinergic mechanisms, we also assessed the behavioural effects of locally administered nicotinic (mecamylamine) and muscarinic (scopolamine) receptor antagonists. RESULTS: Reversible inactivation of the mediodorsal thalamus severely impaired discriminative accuracy and response speed and increased omissions. Inactivation of the anterior thalamus produced less profound effects, with impaired accuracy at the highest dose. In contrast, blocking cholinergic transmission in these regions did not significantly affect five-choice serial reaction time task performance. CONCLUSIONS/INTERPRETATIONS: These findings show the mediodorsal thalamus plays a key role in visuospatial attentional performance that is independent of local cholinergic neurotransmission.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Atenção/fisiologia , Agonistas GABAérgicos/farmacologia , Comportamento Impulsivo/fisiologia , Núcleo Mediodorsal do Tálamo/metabolismo , Antagonistas Muscarínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Desempenho Psicomotor/fisiologia , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Animais , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Atenção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Agonistas GABAérgicos/administração & dosagem , Comportamento Impulsivo/efeitos dos fármacos , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Antagonistas Muscarínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Long-Evans , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA