Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(14): 5111-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706861

RESUMO

Electrostatic counter ion screening is a phenomenon that is detrimental to the sensitivity of charge detection in electrolytic environments, such as in field-effect transistor-based biosensors. Using simple analytical arguments, we show that electrostatic screening is weaker in the vicinity of concave curved surfaces, and stronger in the vicinity of convex surfaces. We use this insight to show, using numerical simulations, that the enhanced sensitivity observed in nanoscale biosensors is due to binding of biomolecules in concave corners where screening is reduced. We show that the traditional argument, that increased surface area-to-volume ratio for nanoscale sensors is responsible for their increased sensitivity, is incorrect.


Assuntos
Técnicas Biossensoriais , Nanotecnologia , Modelos Teóricos
2.
Nanotechnology ; 27(3): 035204, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26650708

RESUMO

To exceed the performance limits of dielectric capacitors in microelectronic circuit applications, we design and demonstrate on-chip coplanar electric double-layer capacitors (EDLCs), or supercapacitors, employing carbon-coated gold electrodes with ionogel electrolyte. The formation of carbon-coated microelectrodes is accomplished by solution processing and results in a ten-fold increase in EDLC capacitance compared to bare gold electrodes without carbon. At frequencies up to 10 Hz, an areal capacitance of 2.1 pF µm(-2) is achieved for coplanar carbon-ionogel EDLCs with 10 µm electrode gaps and 0.14 mm(2) electrode area. Our smallest devices, comprised of 5 µm electrode gaps and 80 µm(2) of active electrode area, reach areal capacitance values of ∼0.3 pF µm(-2) at frequencies up to 1 kHz, even without carbon. To our knowledge, these are the highest reported values to date for on-chip EDLCs with sub-mm(2) areas. A physical EDLC model is developed through the use of computer-aided simulations for design exploration and optimization of coplanar EDLCs. Through modeling and comparison with experimental data, we highlight the importance of reducing the electrode gap and electrolyte resistance to achieve maximum performance from on-chip EDLCs.

3.
Nanotechnology ; 22(25): 254006, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21572190

RESUMO

We have demonstrated, for the first time, a novel three-dimensional (3D) memory chip architecture of stacked-memory-devices-on-logic (SMOL) achieving up to 95% of cell-area efficiency by directly building up memory devices on top of front-end CMOS devices. In order to realize the SMOL, a unique 3D Flash memory device and vertical integration structure have been successfully developed. The SMOL architecture has great potential to achieve tera-bit level memory density by stacking memory devices vertically and maximizing cell-area efficiency. Furthermore, various emerging devices could replace the 3D memory device to develop new 3D chip architectures.

4.
Nat Commun ; 11(1): 5932, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230110

RESUMO

Ultra-long metal nanowires and their facile fabrication have been long sought after as they promise to offer substantial improvements of performance in numerous applications. However, ultra-long metal ultrafine/nanowires are beyond the capability of current manufacturing techniques, which impose limitations on their size and aspect ratio. Here we show that the limitations imposed by fluid instabilities with thermally drawn nanowires can be alleviated by adding tungsten carbide nanoparticles to the metal core to arrive at wire lengths more than 30 cm with diameters as low as 170 nm. The nanoparticles support thermal drawing in two ways, by increasing the viscosity of the metal and lowering the interfacial energy between the boron silicate and zinc phase. This mechanism of suppressing fluid instability by nanoparticles not only enables a scalable production of ultralong metal nanowires, but also serves for widespread applications in other fluid-related fields.

5.
ACS Sens ; 4(9): 2471-2480, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31385505

RESUMO

Electrical properties of biological cells and tissues possess valuable information that enabled numerous applications in biomedical engineering. The common foundation behind them is a numerical model that can predict electrical response of a single cell or a network of cells. We analyzed the past empirical observations to propose the first statistical model that accurately mimics biological diversity among animal cells, yeast cells, and bacteria. Based on membrane elasticity and cell migration mechanisms, we introduce a more realistic three-dimensional geometry generation procedure that captures membrane protrusions and retractions in adherent cells. Together, they form a model of diverse electrical response across multiple cell types. We experimentally verified the model with electrical impedance spectroscopy of a single human cervical carcinoma (HeLa) cell on a microelectrode array. The work is of particular relevance to medical diagnostic and therapeutic applications that involve exposure to electric and magnetic fields.


Assuntos
Fenômenos Eletrofisiológicos , Modelos Biológicos , Impedância Elétrica , Células HeLa , Humanos
6.
ACS Sens ; 3(5): 1005-1015, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29737153

RESUMO

Electric cell-substrate impedance sensing (ECIS) has been instrumental in tracking collective behavior of confluent cell layers for decades. Toward probing cellular heterogeneity in a population, the single-cell version of ECIS has also been explored, yet its intrinsic capability and limitation remain unclear. In this work, we argue for the fundamental feasibility of impedance spectroscopy to track changes of multiple cellular properties using a noninvasive single-cell approach. While changing individual properties is experimentally prohibitive, we take a simulation approach instead and mimic the corresponding changes using a 3D computational model. From the resultant impedance spectra, we identify the spectroscopic signature characteristic to each property considered herein. Since multiple properties change concurrently in practice, the respective signatures often overlap spectroscopically and become hidden. We further attempt to deconvolve such spectra and reveal the underlying property changes. This work provides the theoretical foundation to inspire experimental validation and adoption of ECIS for multiproperty single-cell measurements.


Assuntos
Rastreamento de Células , Análise de Célula Única/métodos , Análise Espectral/métodos , Simulação por Computador , Impedância Elétrica , Estudos de Viabilidade
7.
Sci Rep ; 6: 22630, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26940301

RESUMO

Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT's stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility.


Assuntos
Micropartículas Derivadas de Células , Microfluídica , Micromanipulação/instrumentação , Pinças Ópticas/estatística & dados numéricos , Análise de Célula Única , Meios de Cultura , Condutividade Elétrica , Eletroforese/métodos , Desenho de Equipamento , Humanos
8.
Sci Rep ; 6: 24982, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117746

RESUMO

While animal experimentations have spearheaded numerous breakthroughs in biomedicine, they also have spawned many logistical concerns in providing toxicity screening for copious new materials. Their prioritization is premised on performing cellular-level screening in vitro. Among the screening assays, secretomic assay with high sensitivity, analytical throughput, and simplicity is of prime importance. Here, we build on the over 3-decade-long progress on transistor biosensing and develop the holistic assay platform and procedure called semiconductor electronic label-free assay (SELFA). We demonstrate that SELFA, which incorporates an amplifying nanowire field-effect transistor biosensor, is able to offer superior sensitivity, similar selectivity, and shorter turnaround time compared to standard enzyme-linked immunosorbent assay (ELISA). We deploy SELFA secretomics to predict the inflammatory potential of eleven engineered nanomaterials in vitro, and validate the results with confocal microscopy in vitro and confirmatory animal experiment in vivo. This work provides a foundation for high-sensitivity label-free assay utility in predictive toxicology.


Assuntos
Técnicas Biossensoriais/métodos , Eletrônica/métodos , Programas de Rastreamento/métodos , Toxicologia/métodos , Animais , Humanos , Camundongos Endogâmicos C57BL , Nanofios , Semicondutores , Sensibilidade e Especificidade , Células THP-1
9.
IEEE J Transl Eng Health Med ; 4: 2800510, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602308

RESUMO

The commercialization of new point of care technologies holds great potential in facilitating and advancing precision medicine in heart, lung, blood, and sleep (HLBS) disorders. The delivery of individually tailored health care to a patient depends on how well that patient's health condition can be interrogated and monitored. Point of care technologies may enable access to rapid and cost-effective interrogation of a patient's health condition in near real time. Currently, physiological data are largely limited to single-time-point collection at the hospital or clinic, whereas critical information on some conditions must be collected in the home, when symptoms occur, or at regular intervals over time. A variety of HLBS disorders are highly dependent on transient variables, such as patient activity level, environment, time of day, and so on. Consequently, the National Heart Lung and Blood Institute sponsored a request for applications to support the development and commercialization of novel point-of-care technologies through small businesses (RFA-HL-14-011 and RFA-HL-14-017). Three of the supported research projects are described to highlight particular point-of-care needs for HLBS disorders and the breadth of emerging technologies. While significant obstacles remain to the commercialization of such technologies, these advancements will be required to achieve precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA