Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Infect Dis ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390968

RESUMO

BACKGROUND: We assessed associations between binding antibody (bAb) concentration <5 days of symptom onset and testing positive for COVID-19 among patients in a test-negative study. METHODS: From October 2021─June 2022, study sites in seven states enrolled patients aged ≥6 months presenting with acute respiratory illness. Respiratory specimens were tested for SARS-CoV-2. In blood specimens, we measured concentrations of anti-SARS-CoV-2 antibodies against the ancestral strain spike protein receptor binding domain (RBD) and nucleocapsid (N) antigens in standardized binding antibody units (BAU/mL). Percent change in odds of COVID-19 by increasing anti-RBD bAb was estimated using logistic regression as (1-adjusted odds ratio of COVID-19)x100, adjusting for COVID-19 mRNA vaccine doses, age, site, and high-risk exposure. RESULTS: Out of 2,018 symptomatic patients, 662 (33%) tested positive for acute SARS-CoV-2 infection. Geometric mean RBD bAb were lower among COVID-19 cases than SARS-CoV-2 test-negative patients during both the Delta-predominant (112 vs. 498 BAU/mL) and Omicron-predominant (823 vs. 1,189 BAU/mL) periods. Acute phase ancestral spike RBD bAb associated with 50% lower odds of COVID-19 were 1,968 BAU/mL against Delta and 3,375 BAU/mL against Omicron; thresholds may differ in other laboratories. CONCLUSION: During acute illness, antibody concentrations against ancestral spike RBD were associated with protection against COVID-19.

2.
Clin Infect Dis ; 78(3): 746-755, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37972288

RESUMO

BACKGROUND: During the 2022-2023 influenza season, the United States experienced the highest influenza-associated pediatric hospitalization rate since 2010-2011. Influenza A/H3N2 infections were predominant. METHODS: We analyzed acute respiratory illness (ARI)-associated emergency department or urgent care (ED/UC) encounters or hospitalizations at 3 health systems among children and adolescents aged 6 months-17 years who had influenza molecular testing during October 2022-March 2023. We estimated influenza A vaccine effectiveness (VE) using a test-negative approach. The odds of vaccination among influenza-A-positive cases and influenza-negative controls were compared after adjusting for confounders and applying inverse-propensity-to-be-vaccinated weights. We developed overall and age-stratified VE models. RESULTS: Overall, 13 547 of 44 787 (30.2%) eligible ED/UC encounters and 263 of 1862 (14.1%) hospitalizations were influenza-A-positive cases. Among ED/UC patients, 15.2% of influenza-positive versus 27.1% of influenza-negative patients were vaccinated; VE was 48% (95% confidence interval [CI], 44-52%) overall, 53% (95% CI, 47-58%) among children aged 6 months-4 years, and 38% (95% CI, 30-45%) among those aged 9-17 years. Among hospitalizations, 17.5% of influenza-positive versus 33.4% of influenza-negative patients were vaccinated; VE was 40% (95% CI, 6-61%) overall, 56% (95% CI, 23-75%) among children ages 6 months-4 years, and 46% (95% CI, 2-70%) among those 5-17 years. CONCLUSIONS: During the 2022-2023 influenza season, vaccination reduced the risk of influenza-associated ED/UC encounters and hospitalizations by almost half (overall VE, 40-48%). Influenza vaccination is a critical tool to prevent moderate-to-severe influenza illness in children and adolescents.


Assuntos
Vacinas contra Influenza , Influenza Humana , Adolescente , Criança , Humanos , Estados Unidos/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Eficácia de Vacinas , Hospitalização , Vacinação , Serviço Hospitalar de Emergência , Hospitais
3.
MMWR Morb Mortal Wkly Rep ; 73(8): 168-174, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421935

RESUMO

In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally.


Assuntos
Vacinas contra Influenza , Influenza Humana , Adolescente , Adulto , Humanos , Criança , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Estudos de Casos e Controles , Eficácia de Vacinas
4.
BMC Infect Dis ; 24(1): 300, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454352

RESUMO

BACKGROUND: Symptoms of COVID-19 including fatigue and dyspnea, may persist for weeks to months after SARS-CoV-2 infection. This study compared self-reported disability among SARS-CoV-2-positive and negative persons with mild to moderate COVID-19-like illness who presented for outpatient care before widespread COVID-19 vaccination. METHODS: Unvaccinated adults with COVID-19-like illness enrolled within 10 days of illness onset at three US Flu Vaccine Effectiveness Network sites were tested for SARS-CoV-2 by molecular assay. Enrollees completed an enrollment questionnaire and two follow-up surveys (7-24 days and 2-7 months after illness onset) online or by phone to assess illness characteristics and health status. The second follow-up survey included questions measuring global health, physical function, fatigue, and dyspnea. Scores in the four domains were compared by participants' SARS-CoV-2 test results in univariate analysis and multivariable Gamma regression. RESULTS: During September 22, 2020 - February 13, 2021, 2712 eligible adults were enrolled, 1541 completed the first follow-up survey, and 650 completed the second follow-up survey. SARS-CoV-2-positive participants were more likely to report fever at acute illness but were otherwise comparable to SARS-CoV-2-negative participants. At first follow-up, SARS-CoV-2-positive participants were less likely to have reported fully or mostly recovered from their illness compared to SARS-CoV-2-negative participants. At second follow-up, no differences by SARS-CoV-2 test results were detected in the four domains in the multivariable model. CONCLUSION: Self-reported disability was similar among outpatient SARS-CoV-2-positive and -negative adults 2-7 months after illness onset.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Pacientes Ambulatoriais , COVID-19/diagnóstico , Teste para COVID-19 , Vacinas contra COVID-19 , Dispneia , Fadiga
5.
Clin Infect Dis ; 76(8): 1358-1363, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36504336

RESUMO

BACKGROUND: In the United States, influenza activity during the 2021-2022 season was modest and sufficient enough to estimate influenza vaccine effectiveness (VE) for the first time since the beginning of the coronavirus disease 2019 pandemic. We estimated influenza VE against laboratory-confirmed outpatient acute illness caused by predominant A(H3N2) viruses. METHODS: Between October 2021 and April 2022, research staff across 7 sites enrolled patients aged ≥6 months seeking outpatient care for acute respiratory illness with cough. Using a test-negative design, we assessed VE against influenza A(H3N2). Due to strong correlation between influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, participants who tested positive for SARS-CoV-2 were excluded from VE estimations. Estimates were adjusted for site, age, month of illness, race/ethnicity, and general health status. RESULTS: Among 6260 participants, 468 (7%) tested positive for influenza only, including 440 (94%) for A(H3N2). All 206 sequenced A(H3N2) viruses were characterized as belonging to genetic group 3C.2a1b subclade 2a.2, which has antigenic differences from the 2021-2022 season A(H3N2) vaccine component that belongs to clade 3C.2a1b subclade 2a.1. After excluding 1948 SARS-CoV-2-positive patients, 4312 patients were included in analyses of influenza VE; 2463 (57%) were vaccinated against influenza. Effectiveness against A(H3N2) for all ages was 36% (95% confidence interval, 20%-49%) overall. CONCLUSIONS: Influenza vaccination in 2021-2022 provided protection against influenza A(H3N2)-related outpatient visits among young persons.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Estados Unidos/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Eficácia de Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Vírus da Influenza B
6.
Emerg Infect Dis ; 29(2): 278-285, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599411

RESUMO

Persons with COVID-19-like illnesses are advised to stay home to reduce the spread of SARS-CoV-2. We assessed relationships between telework experience and COVID-19 illness with work attendance when ill. Adults experiencing fever, cough, or loss of taste or smell who sought healthcare or COVID-19 testing in the United States during March-November 2020 were enrolled. Adults with telework experience before illness were more likely to work at all (onsite or remotely) during illness (87.8%) than those with no telework experience (49.9%) (adjusted odds ratio 5.48, 95% CI 3.40-8.83). COVID-19 case-patients were less likely to work onsite (22.1%) than were persons with other acute respiratory illnesses (37.3%) (adjusted odds ratio 0.36, 95% CI 0.24-0.53). Among COVID-19 case-patients with telework experience, only 6.5% worked onsite during illness. Telework experience before illness gave mildly ill workers the option to work and improved compliance with public health recommendations to stay home during illness.


Assuntos
COVID-19 , Adulto , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , Teste para COVID-19 , SARS-CoV-2 , Pandemias , Presenteísmo
7.
Emerg Infect Dis ; 29(12): 2442-2450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917142

RESUMO

Both SARS-CoV-2 and influenza virus can be transmitted by asymptomatic, presymptomatic, or symptomatic infected persons. We assessed effects on work attendance while ill before and during the COVID-19 pandemic in the United States by analyzing data collected prospectively from persons with acute respiratory illnesses enrolled in a multistate study during 2018-2022. Persons with previous hybrid work experience were significantly less likely to work onsite on the day before through the first 3 days of illness than those without that experience, an effect more pronounced during the COVID-19 pandemic than during prepandemic influenza seasons. Persons with influenza or COVID-19 were significantly less likely to work onsite than persons with other acute respiratory illnesses. Among persons with positive COVID-19 test results available by the second or third day of illness, few worked onsite. Hybrid and remote work policies might reduce workplace exposures and help reduce spread of respiratory viruses.


Assuntos
COVID-19 , Influenza Humana , Estados Unidos/epidemiologia , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Influenza Humana/epidemiologia , Pandemias , Teste para COVID-19
8.
MMWR Recomm Rep ; 71(1): 1-28, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36006864

RESUMO

THIS REPORT UPDATES THE 2021-22 RECOMMENDATIONS OF THE ADVISORY COMMITTEE ON IMMUNIZATION PRACTICES (ACIP) CONCERNING THE USE OF SEASONAL INFLUENZA VACCINES IN THE UNITED STATES: (MMWR Recomm Rep 2021;70[No. RR-5]:1-24). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. With the exception of vaccination for adults aged ≥65 years, ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. All seasonal influenza vaccines expected to be available in the United States for the 2022-23 season are quadrivalent, containing hemagglutinin (HA) derived from one influenza A(H1N1)pdm09 virus, one influenza A(H3N2) virus, one influenza B/Victoria lineage virus, and one influenza B/Yamagata lineage virus. Inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4) are expected to be available. Trivalent influenza vaccines are no longer available, but data that involve these vaccines are included for reference. INFLUENZA VACCINES MIGHT BE AVAILABLE AS EARLY AS JULY OR AUGUST, BUT FOR MOST PERSONS WHO NEED ONLY 1 DOSE OF INFLUENZA VACCINE FOR THE SEASON, VACCINATION SHOULD IDEALLY BE OFFERED DURING SEPTEMBER OR OCTOBER. HOWEVER, VACCINATION SHOULD CONTINUE AFTER OCTOBER AND THROUGHOUT THE SEASON AS LONG AS INFLUENZA VIRUSES ARE CIRCULATING AND UNEXPIRED VACCINE IS AVAILABLE. FOR MOST ADULTS (PARTICULARLY ADULTS AGED ≥65 YEARS) AND FOR PREGNANT PERSONS IN THE FIRST OR SECOND TRIMESTER, VACCINATION DURING JULY AND AUGUST SHOULD BE AVOIDED UNLESS THERE IS CONCERN THAT VACCINATION LATER IN THE SEASON MIGHT NOT BE POSSIBLE. CERTAIN CHILDREN AGED 6 MONTHS THROUGH 8 YEARS NEED 2 DOSES; THESE CHILDREN SHOULD RECEIVE THE FIRST DOSE AS SOON AS POSSIBLE AFTER VACCINE IS AVAILABLE, INCLUDING DURING JULY AND AUGUST. VACCINATION DURING JULY AND AUGUST CAN BE CONSIDERED FOR CHILDREN OF ANY AGE WHO NEED ONLY 1 DOSE FOR THE SEASON AND FOR PREGNANT PERSONS WHO ARE IN THE THIRD TRIMESTER IF VACCINE IS AVAILABLE DURING THOSE MONTHS: UPDATES DESCRIBED IN THIS REPORT REFLECT DISCUSSIONS DURING PUBLIC MEETINGS OF ACIP THAT WERE HELD ON OCTOBER 20, 2021; JANUARY 12, 2022; FEBRUARY 23, 2022; AND JUNE 22, 2022. PRIMARY UPDATES TO THIS REPORT INCLUDE THE FOLLOWING THREE TOPICS: 1) THE COMPOSITION OF 2022-23 U.S. SEASONAL INFLUENZA VACCINES; 2) UPDATES TO THE DESCRIPTION OF INFLUENZA VACCINES EXPECTED TO BE AVAILABLE FOR THE 2022-23 SEASON, INCLUDING ONE INFLUENZA VACCINE LABELING CHANGE THAT OCCURRED AFTER THE PUBLICATION OF THE 2021-22 ACIP INFLUENZA RECOMMENDATIONS; AND 3) UPDATES TO THE RECOMMENDATIONS CONCERNING VACCINATION OF ADULTS AGED ≥65 YEARS. FIRST, THE COMPOSITION OF 2022-23 U.S. INFLUENZA VACCINES INCLUDES UPDATES TO THE INFLUENZA A(H3N2) AND INFLUENZA B/VICTORIA LINEAGE COMPONENTS. U.S.-LICENSED INFLUENZA VACCINES WILL CONTAIN HA DERIVED FROM AN INFLUENZA A/VICTORIA/2570/2019 (H1N1)PDM09-LIKE VIRUS (FOR EGG-BASED VACCINES) OR AN INFLUENZA A/WISCONSIN/588/2019 (H1N1)PDM09-LIKE VIRUS (FOR CELL CULTURE-BASED OR RECOMBINANT VACCINES); AN INFLUENZA A/DARWIN/9/2021 (H3N2)-LIKE VIRUS (FOR EGG-BASED VACCINES) OR AN INFLUENZA A/DARWIN/6/2021 (H3N2)-LIKE VIRUS (FOR CELL CULTURE-BASED OR RECOMBINANT VACCINES); AN INFLUENZA B/AUSTRIA/1359417/2021 (VICTORIA LINEAGE)-LIKE VIRUS; AND AN INFLUENZA B/PHUKET/3073/2013 (YAMAGATA LINEAGE)-LIKE VIRUS. SECOND, THE APPROVED AGE INDICATION FOR THE CELL CULTURE-BASED INACTIVATED INFLUENZA VACCINE, FLUCELVAX QUADRIVALENT (CCIIV4), WAS CHANGED IN OCTOBER 2021 FROM ≥2 YEARS TO ≥6 MONTHS. THIRD, RECOMMENDATIONS FOR VACCINATION OF ADULTS AGED ≥65 YEARS HAVE BEEN MODIFIED. ACIP RECOMMENDS THAT ADULTS AGED ≥65 YEARS PREFERENTIALLY RECEIVE ANY ONE OF THE FOLLOWING HIGHER DOSE OR ADJUVANTED INFLUENZA VACCINES: QUADRIVALENT HIGH-DOSE INACTIVATED INFLUENZA VACCINE (HD-IIV4), QUADRIVALENT RECOMBINANT INFLUENZA VACCINE (RIV4), OR QUADRIVALENT ADJUVANTED INACTIVATED INFLUENZA VACCINE (AIIV4). IF NONE OF THESE THREE VACCINES IS AVAILABLE AT AN OPPORTUNITY FOR VACCINE ADMINISTRATION, THEN ANY OTHER AGE-APPROPRIATE INFLUENZA VACCINE SHOULD BE USED: THIS REPORT FOCUSES ON RECOMMENDATIONS FOR THE USE OF VACCINES FOR THE PREVENTION AND CONTROL OF SEASONAL INFLUENZA DURING THE 2022-23 INFLUENZA SEASON IN THE UNITED STATES. A BRIEF SUMMARY OF THE RECOMMENDATIONS AND A LINK TO THE MOST RECENT BACKGROUND DOCUMENT CONTAINING ADDITIONAL INFORMATION ARE AVAILABLE AT: https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto , Comitês Consultivos , Criança , Feminino , Humanos , Esquemas de Imunização , Lactente , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Gravidez , Estações do Ano , Estados Unidos/epidemiologia , Vacinação , Vacinas Combinadas/uso terapêutico , Vacinas de Produtos Inativados/uso terapêutico
9.
Clin Infect Dis ; 75(1): 170-175, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34875035

RESUMO

BACKGROUND: Relative vaccine effectiveness (rVE) are metrics commonly reported to compare absolute VE (aVE) of 2 vaccine products. METHODS: Estimates of rVE for enhanced influenza vaccines (eIV) vs standard inactivated influenza vaccine (IIV) have been assessed across different seasons, influenza-specific endpoints, and nonspecific endpoints (eg, all-cause cardiovascular hospitalizations). To illustrate the challenges of comparability across studies, we conducted a scenario analysis to evaluate the effects of varying absolute VE (aVE) of IIV (ie, as compared with placebo) on the interpretation of rVE of eIV vs IIV. RESULTS: We show that estimates of rVE might not be comparable across studies because additional benefits commensurate with a given estimate of rVE are dependent on the aVE for the comparator vaccine, which can depend on factors such as host response to vaccine, virus type, and clinical endpoint evaluated. CONCLUSIONS: These findings have implications for interpretation of rVE across studies and for sample size considerations in future trials.


Assuntos
Vacinas contra Influenza , Influenza Humana , Hospitalização , Humanos , Estações do Ano , Vacinas de Produtos Inativados
10.
Am J Epidemiol ; 191(3): 465-471, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-34274963

RESUMO

Intraseason timing of influenza infection among persons of different ages could reflect relative contributions to propagation of seasonal epidemics and has not been examined among ambulatory patients. Using data from the US Influenza Vaccine Effectiveness Network, we calculated risk ratios derived from comparing weekly numbers of influenza cases prepeak with those postpeak during the 2010-2011 through 2018-2019 influenza seasons. We sought to determine age-specific differences during the ascent versus descent of an influenza season by influenza virus type and subtype. We estimated 95% credible intervals around the risk ratios using Bayesian joint posterior sampling of weekly cases. Our population consisted of ambulatory patients with laboratory-confirmed influenza who enrolled in an influenza vaccine effectiveness study at 5 US sites during 9 influenza seasons after the 2009 influenza A virus subtype H1N1 (H1N1) pandemic. We observed that young children aged <5 years tended to more often be infected with H1N1 during the prepeak period, while adults aged ≥65 years tended to more often be infected with H1N1 during the postpeak period. However, for influenza A virus subtype H3N2, children aged <5 years were more often infected during the postpeak period. These results may reflect a contribution of different age groups to seasonal spread, which may differ by influenza virus type and subtype.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto , Teorema de Bayes , Criança , Pré-Escolar , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Vacinação , Eficácia de Vacinas
11.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271561

RESUMO

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Assuntos
Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Eficácia de Vacinas , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza B/imunologia , Pessoa de Meia-Idade , Vigilância da População , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
12.
J Infect Dis ; 224(3): 469-480, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33090202

RESUMO

BACKGROUND: Preexisting antibodies to influenza, shaped by early infection and subsequent exposures, may impact responses to influenza vaccination. METHODS: We enrolled 72 children (aged 7-17 years) in 2015-2016; all received inactivated influenza vaccines. Forty-one were also vaccinated in 2014-2015, with 12 becoming infected with A(H3N2) in 2014-2015. Thirty-one children did not have documented influenza exposures in the prior 5 seasons. Sera were collected pre- and postvaccination in both seasons. We constructed antibody landscapes using hemagglutination inhibition antibody titers against 16 A(H3N2) viruses representative of major antigenic clusters that circulated between 1968 and 2015. RESULTS: The breadth of the antibody landscapes increased with age. Vaccine-induced antibody responses correlated with boosting of titers to previously encountered antigens. Postvaccination titers were the highest against vaccine antigens rather than the historic A(H3N2) viruses previously encountered. Prevaccination titers to the vaccine were the strongest predictors of postvaccination titers. Responses to vaccine antigens did not differ by likely priming virus. Influenza A(H3N2)-infected children in 2014-2015 had narrower antibody landscapes than those uninfected, but prior season infection status had little effect on antibody landscapes following 2015-2016 vaccination. CONCLUSIONS: A(H3N2) antibody landscapes in children were largely determined by age-related immune priming, rather than recent vaccination or infection.


Assuntos
Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Criança , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/prevenção & controle , Vacinação , Vacinas de Produtos Inativados
13.
J Infect Dis ; 224(10): 1694-1698, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498052

RESUMO

Evaluations of vaccine effectiveness (VE) are important to monitor as coronavirus disease 2019 (COVID-19) vaccines are introduced in the general population. Research staff enrolled symptomatic participants seeking outpatient medical care for COVID-19-like illness or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing from a multisite network. VE was evaluated using the test-negative design. Among 236 SARS-CoV-2 nucleic acid amplification test-positive and 576 test-negative participants aged ≥16 years, the VE of messenger RNA vaccines against COVID-19 was 91% (95% confidence interval, 83%-95%) for full vaccination and 75% (55%-87%) for partial vaccination. Vaccination was associated with prevention of most COVID-19 cases among people seeking outpatient medical care.


Assuntos
COVID-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Pacientes Ambulatoriais , RNA Mensageiro , SARS-CoV-2/genética , Estados Unidos/epidemiologia , Vacinas Sintéticas , Vacinas de mRNA
14.
Clin Infect Dis ; 73(3): 497-505, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-32505128

RESUMO

BACKGROUND: We compared effects of prior vaccination and added or lost protection from current season vaccination among those previously vaccinated. METHODS: Our analysis included data from the US Flu Vaccine Effectiveness Network among participants ≥9 years old with acute respiratory illness from 2012-2013 through 2017-2018. Vaccine protection was estimated using multivariate logistic regression with an interaction term for effect of prior season vaccination on current season vaccine effectiveness. Models were adjusted for age, calendar time, high-risk status, site, and season for combined estimates. We estimated protection by combinations of current and prior vaccination compared to unvaccinated in both seasons or current vaccination among prior vaccinated. RESULTS: A total of 31 819 participants were included. Vaccine protection against any influenza averaged 42% (95% confidence interval [CI], 38%-47%) among those vaccinated only the current season, 37% (95% CI, 33-40) among those vaccinated both seasons, and 26% (95% CI, 18%-32%) among those vaccinated only the prior season, compared with participants vaccinated neither season. Current season vaccination reduced the odds of any influenza among patients unvaccinated the prior season by 42% (95% CI, 37%-46%), including 57%, 27%, and 55% against A(H1N1), A(H3N2), and influenza B, respectively. Among participants vaccinated the prior season, current season vaccination further reduced the odds of any influenza by 15% (95% CI, 7%-23%), including 29% against A(H1N1) and 26% against B viruses, but not against A(H3N2). CONCLUSIONS: Our findings support Advisory Committee on Immunization Practices recommendations for annual influenza vaccination. Benefits of current season vaccination varied among participants with and without prior season vaccination, by virus type/subtype and season.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/prevenção & controle , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
15.
Clin Infect Dis ; 72(7): 1147-1157, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32006430

RESUMO

BACKGROUND: Since 2013, quadrivalent influenza vaccines containing 2 B viruses gradually replaced trivalent vaccines in the United States. We compared the vaccine effectiveness of quadrivalent to trivalent inactivated vaccines (IIV4 to IIV3, respectively) against illness due to influenza B during the transition, when IIV4 use increased rapidly. METHODS: The US Influenza Vaccine Effectiveness (Flu VE) Network analyzed 25 019 of 42 600 outpatients aged ≥6 months who enrolled within 7 days of illness onset during 6 seasons from 2011-2012. Upper respiratory specimens were tested for the influenza virus type and B lineage. Using logistic regression, we estimated IIV4 or IIV3 effectiveness by comparing the odds of an influenza B infection overall and the odds of B lineage among vaccinated versus unvaccinated participants. Over 4 seasons from 2013-2014, we compared the relative odds of an influenza B infection among IIV4 versus IIV3 recipients. RESULTS: Trivalent vaccines included the predominantly circulating B lineage in 4 of 6 seasons. During 4 influenza seasons when both IIV4 and IIV3 were widely used, the overall effectiveness against any influenza B was 53% (95% confidence interval [CI], 45-59) for IIV4 versus 45% (95% CI, 34-54) for IIV3. IIV4 was more effective than IIV3 against the B lineage not included in IIV3, but comparative effectiveness against illnesses related to any influenza B favored neither vaccine valency. CONCLUSIONS: The uptake of quadrivalent inactivated influenza vaccines was not associated with increased protection against any influenza B illness, despite the higher effectiveness of quadrivalent vaccines against the added B virus lineage. Public health impact and cost-benefit analyses are needed globally.


Assuntos
Vacinas contra Influenza , Influenza Humana , Idoso , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Estados Unidos/epidemiologia , Vacinação , Vacinas Combinadas , Vacinas de Produtos Inativados
16.
Clin Infect Dis ; 73(11): e4244-e4250, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33367650

RESUMO

BACKGROUND: At the start of the 2019-2020 influenza season, concern arose that circulating B/Victoria viruses of the globally emerging clade V1A.3 were antigenically drifted from the strain included in the vaccine. Intense B/Victoria activity was followed by circulation of genetically diverse A(H1N1)pdm09 viruses that were also antigenically drifted. We measured vaccine effectiveness (VE) in the United States against illness from these emerging viruses. METHODS: We enrolled outpatients aged ≥6 months with acute respiratory illness at 5 sites. Respiratory specimens were tested for influenza by reverse-transcriptase polymerase chain reaction (RT-PCR). Using the test-negative design, we determined influenza VE by virus subtype/lineage and genetic subclades by comparing odds of vaccination in influenza cases versus test-negative controls. RESULTS: Among 8845 enrollees, 2722 (31%) tested positive for influenza, including 1209 (44%) for B/Victoria and 1405 (51%) for A(H1N1)pdm09. Effectiveness against any influenza illness was 39% (95% confidence interval [CI]: 32-44), 45% (95% CI: 37-52) against B/Victoria and 30% (95% CI: 21-39) against A(H1N1)pdm09-associated illness. Vaccination offered no protection against A(H1N1)pdm09 viruses with antigenically drifted clade 6B.1A 183P-5A+156K HA genes (VE 7%; 95% CI: -14 to 23%) which predominated after January. CONCLUSIONS: Vaccination provided protection against influenza illness, mainly due to infections from B/Victoria viruses. Vaccine protection against illness from A(H1N1)pdm09 was lower than historically observed effectiveness of 40%-60%, due to late-season vaccine mismatch following emergence of antigenically drifted viruses. The effect of drift on vaccine protection is not easy to predict and, even in drifted years, significant protection can be observed.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Deriva e Deslocamento Antigênicos , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Estados Unidos/epidemiologia , Vacinação , Eficácia de Vacinas
17.
BMC Public Health ; 21(1): 516, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726743

RESUMO

BACKGROUND: Routine influenza vaccine effectiveness (VE) surveillance networks use frequentist methods to estimate VE. With data from more than a decade of VE surveillance from diverse global populations now available, using Bayesian methods to explicitly account for this knowledge may be beneficial. This study explores differences between Bayesian vs. frequentist inference in multiple seasons with varying VE. METHODS: We used data from the United States Influenza Vaccine Effectiveness (US Flu VE) Network. Ambulatory care patients with acute respiratory illness were enrolled during seasons of varying observed VE based on traditional frequentist methods. We estimated VE against A(H1N1)pdm in 2015/16, dominated by A(H1N1)pdm; against A(H3N2) in 2017/18, dominated by A(H3N2); and compared VE for live attenuated influenza vaccine (LAIV) vs. inactivated influenza vaccine (IIV) among children aged 2-17 years in 2013/14, also dominated by A(H1N1)pdm. VE was estimated using both frequentist and Bayesian methods using the test-negative design. For the Bayesian estimates, prior VE distributions were based on data from all published test-negative studies of the same influenza type/subtype available prior to the season of interest. RESULTS: Across the three seasons, 16,342 subjects were included in the analyses. For 2015/16, frequentist and Bayesian VE estimates were essentially identical (41% each). For 2017/18, frequentist and Bayesian estimates of VE against A(H3N2) viruses were also nearly identical (26% vs. 23%, respectively), even though the presence of apparent antigenic match could potentially have pulled Bayesian estimates upward. Precision of estimates was similar between methods in both seasons. Frequentist and Bayesian estimates diverged for children in 2013/14. Under the frequentist approach, LAIV effectiveness was 62 percentage points lower than IIV, while LAIV was only 27 percentage points lower than IIV under the Bayesian approach. CONCLUSION: Bayesian estimates of influenza VE can differ from frequentist estimates to a clinically meaningful degree when VE diverges substantially from previous seasons.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adolescente , Teorema de Bayes , Estudos de Casos e Controles , Criança , Pré-Escolar , Humanos , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
18.
J Infect Dis ; 221(1): 8-15, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665373

RESUMO

BACKGROUND: Increased illness due to antigenically drifted A(H3N2) clade 3C.3a influenza viruses prompted concerns about vaccine effectiveness (VE) and vaccine strain selection. We used US virologic surveillance and US Influenza Vaccine Effectiveness (Flu VE) Network data to evaluate consequences of this clade. METHODS: Distribution of influenza viruses was described using virologic surveillance data. The Flu VE Network enrolled ambulatory care patients aged ≥6 months with acute respiratory illness at 5 sites. Respiratory specimens were tested for influenza by means of reverse-transcriptase polymerase chain reaction and were sequenced. Using a test-negative design, we estimated VE, comparing the odds of influenza among vaccinated versus unvaccinated participants. RESULTS: During the 2018-2019 influenza season, A(H3N2) clade 3C.3a viruses caused an increasing proportion of influenza cases. Among 2763 Flu VE Network case patients, 1325 (48%) were infected with A(H1N1)pdm09 and 1350 (49%) with A(H3N2); clade 3C.3a accounted for 977 (93%) of 1054 sequenced A(H3N2) viruses. VE was 44% (95% confidence interval, 37%-51%) against A(H1N1)pdm09 and 9% (-4% to 20%) against A(H3N2); VE was 5% (-10% to 19%) against A(H3N2) clade 3C.3a viruses. CONCLUSIONS: The predominance of A(H3N2) clade 3C.3a viruses during the latter part of the 2018-2019 season was associated with decreased VE, supporting the A(H3N2) vaccine component update for 2019-2020 northern hemisphere influenza vaccines.


Assuntos
Variação Antigênica , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Nariz/virologia , Orofaringe/virologia , Vigilância da População , RNA Viral/análise , Estados Unidos/epidemiologia , Vacinação , Adulto Jovem
19.
Clin Infect Dis ; 71(8): e368-e376, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31905401

RESUMO

BACKGROUND: Multivalent influenza vaccine products provide protection against influenza A(H1N1)pdm09, A(H3N2), and B lineage viruses. The 2018-2019 influenza season in the United States included prolonged circulation of A(H1N1)pdm09 viruses well-matched to the vaccine strain and A(H3N2) viruses, the majority of which were mismatched to the vaccine. We estimated the number of vaccine-prevented influenza-associated illnesses, medical visits, hospitalizations, and deaths for the season. METHODS: We used a mathematical model and Monte Carlo algorithm to estimate numbers and 95% uncertainty intervals (UIs) of influenza-associated outcomes prevented by vaccination in the United States. The model incorporated age-specific estimates of national 2018-2019 influenza vaccine coverage, influenza virus-specific vaccine effectiveness from the US Influenza Vaccine Effectiveness Network, and disease burden estimated from population-based rates of influenza-associated hospitalizations through the Influenza Hospitalization Surveillance Network. RESULTS: Influenza vaccination prevented an estimated 4.4 million (95%UI, 3.4 million-7.1 million) illnesses, 2.3 million (95%UI, 1.8 million-3.8 million) medical visits, 58 000 (95%UI, 30 000-156 000) hospitalizations, and 3500 (95%UI, 1000-13 000) deaths due to influenza viruses during the US 2018-2019 influenza season. Vaccination prevented 14% of projected hospitalizations associated with A(H1N1)pdm09 overall and 43% among children aged 6 months-4 years. CONCLUSIONS: Influenza vaccination averted substantial influenza-associated disease including hospitalizations and deaths in the United States, primarily due to effectiveness against A(H1N1)pdm09. Our findings underscore the value of influenza vaccination, highlighting that vaccines measurably decrease illness and associated healthcare utilization even in a season in which a vaccine component does not match to a circulating virus.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Humanos , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
20.
Emerg Infect Dis ; 26(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855145

RESUMO

We assessed determinants of work attendance during the first 3 days after onset of acute respiratory illness (ARI) among workers 19-64 years of age who had medically attended ARI or influenza during the 2017-2018 influenza season. The total number of days worked included days worked at the usual workplace and days teleworked. Access to paid leave was associated with fewer days worked overall and at the usual workplace during illness. Participants who indicated that employees were discouraged from coming to work with influenza-like symptoms were less likely to attend their usual workplace. Compared with workers without a telework option, those with telework access worked more days during illness overall, but there was no difference in days worked at the usual workplace. Both paid leave benefits and business practices that actively encourage employees to stay home while sick are necessary to reduce the transmission of ARI and influenza in workplaces.


Assuntos
Presenteísmo/estatística & dados numéricos , Doenças Respiratórias/epidemiologia , Licença Médica/estatística & dados numéricos , Teletrabalho , Adulto , Feminino , Humanos , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Presenteísmo/economia , Licença Médica/economia , Inquéritos e Questionários , Teletrabalho/estatística & dados numéricos , Estados Unidos , Local de Trabalho/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA