Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33583770

RESUMO

Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases, suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development, but our molecular understanding of the precise glycans, catalytic enzymes, and lectins involved remains only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown digalactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labeling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins, most notably the upregulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation, suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the upregulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.


Assuntos
Galectina 1/metabolismo , Glicopeptídeos/metabolismo , Desenvolvimento Muscular , Animais , Linhagem Celular , Galectina 1/genética , Glicômica , Glicosilação , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Ratos
2.
Biochem Biophys Res Commun ; 495(1): 666-671, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129691

RESUMO

The presence of adducts on the DNA double-helix can have major consequences for the efficient functioning of DNA repair enzymes. E. coli RecBCD (exonuclease V) is involved in recombinational repair of double-strand breaks that are caused by defective DNA replication, DNA damaging agents and other factors. The holoenzyme possesses a bipolar helicase activity which helps unwind DNA from both 3'- and 5'-directions and is coupled with a potent exonuclease activity that is also capable of digesting DNA from both 3'- and 5'-ends. In this study, DNA sequences were damaged with cisplatin or UV followed by RecBCD treatment. DNA damaging agents such as cisplatin and UV induce the formation of intrastrand adducts in the DNA template. It was demonstrated that RecBCD degradation was inhibited by either cisplatin-damaged or UV-damaged DNA sequences. This is the first occasion that RecBCD has been demonstrated to be inhibited by DNA adducts induced by cisplatin or UV. In addition, we quantified the amounts of DNA remaining after RecBCD treatment and observed that the level of inhibition was concentration and dose dependent. A DNA-targeted 9-aminoacridinecarboxamide cisplatin analogue was also found to inhibit RecBCD activity.


Assuntos
Cisplatino/química , Adutos de DNA/química , Exodesoxirribonuclease V/química , Exodesoxirribonuclease V/efeitos da radiação , Plasmídeos/química , Raios Ultravioleta , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Exodesoxirribonuclease V/efeitos dos fármacos , Plasmídeos/efeitos dos fármacos , Plasmídeos/efeitos da radiação
3.
Int J Mol Sci ; 19(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734689

RESUMO

The cancer chemotherapeutic drug, bleomycin, is clinically used to treat several neoplasms including testicular and ovarian cancers. Bleomycin is a metallo-glycopeptide antibiotic that requires a transition metal ion, usually Fe(II), for activity. In this review, the properties of bleomycin are examined, especially the interaction of bleomycin with DNA. A Fe(II)-bleomycin complex is capable of DNA cleavage and this process is thought to be the major determinant for the cytotoxicity of bleomycin. The DNA sequence specificity of bleomycin cleavage is found to at 5′-GT* and 5′-GC* dinucleotides (where * indicates the cleaved nucleotide). Using next-generation DNA sequencing, over 200 million double-strand breaks were analysed, and an expanded bleomycin sequence specificity was found to be 5′-RTGT*AY (where R is G or A and Y is T or C) in cellular DNA and 5′-TGT*AT in purified DNA. The different environment of cellular DNA compared to purified DNA was proposed to be responsible for the difference. A number of bleomycin analogues have been examined and their interaction with DNA is also discussed. In particular, the production of bleomycin analogues via genetic manipulation of the modular non-ribosomal peptide synthetases and polyketide synthases in the bleomycin gene cluster is reviewed. The prospects for the synthesis of bleomycin analogues with increased effectiveness as cancer chemotherapeutic agents is also explored.


Assuntos
Bleomicina/química , DNA/química , Neoplasias/tratamento farmacológico , Compostos Organometálicos/química , Bleomicina/uso terapêutico , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , DNA/genética , Clivagem do DNA/efeitos dos fármacos , Glicopeptídeos/química , Humanos , Ferro/química , Neoplasias/genética , Compostos Organometálicos/uso terapêutico
4.
Sci Rep ; 14(1): 4375, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388524

RESUMO

The analysis of ceramide (Cer) and sphingomyelin (SM) lipid species using liquid chromatography-tandem mass spectrometry (LC-MS/MS) continues to present challenges as their precursor mass and fragmentation can correspond to multiple molecular arrangements. To address this constraint, we developed ReTimeML, a freeware that automates the expected retention times (RTs) for Cer and SM lipid profiles from complex chromatograms. ReTimeML works on the principle that LC-MS/MS experiments have pre-determined RTs from internal standards, calibrators or quality controls used throughout the analysis. Employed as reference RTs, ReTimeML subsequently extrapolates the RTs of unknowns using its machine-learned regression library of mass-to-charge (m/z) versus RT profiles, which does not require model retraining for adaptability on different LC-MS/MS pipelines. We validated ReTimeML RT estimations for various Cer and SM structures across different biologicals, tissues and LC-MS/MS setups, exhibiting a mean variance between 0.23 and 2.43% compared to user annotations. ReTimeML also aided the disambiguation of SM identities from isobar distributions in paired serum-cerebrospinal fluid from healthy volunteers, allowing us to identify a series of non-canonical SMs associated between the two biofluids comprised of a polyunsaturated structure that confers increased stability against catabolic clearance.


Assuntos
Esfingolipídeos , Espectrometria de Massas em Tandem , Humanos , Esfingolipídeos/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Ceramidas/química , Esfingomielinas/química
5.
J Photochem Photobiol B ; 178: 133-142, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29149689

RESUMO

The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage.


Assuntos
Dano ao DNA , Raios Ultravioleta/efeitos adversos , Sequência de Bases , Reparo do DNA/efeitos da radiação , Dímeros de Pirimidina/metabolismo
6.
J Photochem Photobiol B ; 183: 88-100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29698913

RESUMO

The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons.


Assuntos
Dano ao DNA/efeitos da radiação , Raios Ultravioleta , Sequência de Bases , DNA/química , DNA/metabolismo , Adutos de DNA/química , Reação em Cadeia da Polimerase , Dímeros de Pirimidina/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-26638033

RESUMO

The DNA sequence specificity of the cancer chemotherapeutic agent, bleomycin, was investigated in two human mitochondrial DNA sequences. Bleomycin was found to cleave preferentially at 5'-TGT*A-3' DNA sequences (where * is the cleavage site). The bleomycin analysis using capillary electrophoresis with laser-induced fluorescence was determined on both DNA strands and each strand was independently fluorescently labelled at the 3'- and 5'-ends. There was a high level of correlation between the intensity of bleomycin cleavage sites analysed by 3'- and 5'-end labelling. This is the first occasion that a comprehensive comparison has been made between these two end-labelling procedures to quantify cleavage by a DNA damaging agent and to investigate end-label bias. A comparison was also made between the bleomycin DNA sequence specificity obtained from genome-wide next-generation sequencing with that obtained from purified plasmid DNA sequences. This was accomplished by cloning sections of human mitochondrial DNA and comparing these identical mitochondrial DNA in the human mitochondrial genome. At individual sites, there was a very low level of correlation between bleomycin cleavage in plasmid sequencing and genome-wide sequencing. However, the overall bleomycin DNA sequence specificity was very similar in the two environments, namely 5'-TGT*A-3'.


Assuntos
Bleomicina/farmacologia , DNA Mitocondrial/genética , Estudo de Associação Genômica Ampla , Animais , Antibióticos Antineoplásicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA