Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Immunity ; 56(9): 2105-2120.e13, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37527657

RESUMO

Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.


Assuntos
Astrócitos , Fagocitose , Estresse Psicológico , Animais , Criança , Humanos , Camundongos , Astrócitos/metabolismo , c-Mer Tirosina Quinase/genética , Hormônios/metabolismo , Sinapses/metabolismo , Estresse Psicológico/metabolismo
2.
Nature ; 590(7847): 612-617, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33361813

RESUMO

In the adult hippocampus, synapses are constantly formed and eliminated1,2. However, the exact function of synapse elimination in the adult brain, and how it is regulated, are largely unknown. Here we show that astrocytic phagocytosis3 is important for maintaining proper hippocampal synaptic connectivity and plasticity. By using fluorescent phagocytosis reporters, we find that excitatory and inhibitory synapses are eliminated by glial phagocytosis in the CA1 region of the adult mouse hippocampus. Unexpectedly, we found that astrocytes have a major role in the neuronal activity-dependent elimination of excitatory synapses. Furthermore, mice in which astrocytes lack the phagocytic receptor MEGF10 show a reduction in the elimination of excitatory synapses; as a result, excessive but functionally impaired synapses accumulate. Finally, Megf10-knockout mice show defective long-term synaptic plasticity and impaired formation of hippocampal memories. Together, our data provide strong evidence that astrocytes eliminate unnecessary excitatory synaptic connections in the adult hippocampus through MEGF10, and that this astrocytic function is crucial for maintaining circuit connectivity and thereby supporting cognitive function.


Assuntos
Envelhecimento , Astrócitos/citologia , Região CA1 Hipocampal/citologia , Homeostase , Vias Neurais , Fagocitose , Sinapses/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Potenciais Pós-Sinápticos Inibidores , Masculino , Proteínas de Membrana/metabolismo , Memória/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia
3.
EMBO J ; 40(15): e107121, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34013588

RESUMO

Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat-me" signal that initiates glia-mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal-specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well-known "eat-me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post-synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post-synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post-synapse elimination. Moreover, we found that phosphatidylserine is used for microglia-mediated pruning of inhibitory post-synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat-me" signal for inhibitory post-synapse elimination.


Assuntos
Microglia/metabolismo , Fosfatidilserinas/metabolismo , Convulsões/fisiopatologia , Sinapses/fisiologia , c-Mer Tirosina Quinase/metabolismo , Animais , Encéfalo/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fagocitose/fisiologia , Convulsões/genética , c-Mer Tirosina Quinase/genética
4.
Nature ; 560(7717): 243-247, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069053

RESUMO

Glioblastoma (GBM) is a devastating and incurable brain tumour, with a median overall survival of fifteen months1,2. Identifying the cell of origin that harbours mutations that drive GBM could provide a fundamental basis for understanding disease progression and developing new treatments. Given that the accumulation of somatic mutations has been implicated in gliomagenesis, studies have suggested that neural stem cells (NSCs), with their self-renewal and proliferative capacities, in the subventricular zone (SVZ) of the adult human brain may be the cells from which GBM originates3-5. However, there is a lack of direct genetic evidence from human patients with GBM4,6-10. Here we describe direct molecular genetic evidence from patient brain tissue and genome-edited mouse models that show astrocyte-like NSCs in the SVZ to be the cell of origin that contains the driver mutations of human GBM. First, we performed deep sequencing of triple-matched tissues, consisting of (i) normal SVZ tissue away from the tumour mass, (ii) tumour tissue, and (iii) normal cortical tissue (or blood), from 28 patients with isocitrate dehydrogenase (IDH) wild-type GBM or other types of brain tumour. We found that normal SVZ tissue away from the tumour in 56.3% of patients with wild-type IDH GBM contained low-level GBM driver mutations (down to approximately 1% of the mutational burden) that were observed at high levels in their matching tumours. Moreover, by single-cell sequencing and laser microdissection analysis of patient brain tissue and genome editing of a mouse model, we found that astrocyte-like NSCs that carry driver mutations migrate from the SVZ and lead to the development of high-grade malignant gliomas in distant brain regions. Together, our results show that NSCs in human SVZ tissue are the cells of origin that contain the driver mutations of GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Ventrículos Laterais/patologia , Mutação , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Progressão da Doença , Edição de Genes , Genoma/genética , Glioblastoma/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isocitrato Desidrogenase/genética , Ventrículos Laterais/metabolismo , Camundongos , Reprodutibilidade dos Testes , Análise de Célula Única
6.
Mol Ther ; 31(4): 1002-1016, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36755495

RESUMO

Fabry disease (FD), a lysosomal storage disorder, is caused by defective α-galactosidase (GLA) activity, which results in the accumulation of globotriaosylceramide (Gb3) in endothelial cells and leads to life-threatening complications such as left ventricular hypertrophy (LVH), renal failure, and stroke. Enzyme replacement therapy (ERT) results in Gb3 clearance; however, because of a short half-life in the body and the high immunogenicity of FD patients, ERT has a limited therapeutic effect, particularly in patients with late-onset disease or progressive complications. Because vascular endothelial cells (VECs) derived from FD-induced pluripotent stem cells display increased thrombospondin-1 (TSP1) expression and enhanced SMAD2 signaling, we screened for chemical compounds that could downregulate TSP1 and SMAD2 signaling. Fasudil reduced the levels of p-SMAD2 and TSP1 in FD-VECs and increased the expression of angiogenic factors. Furthermore, fasudil downregulated the endothelial-to-mesenchymal transition (EndMT) and mitochondrial function of FD-VECs. Oral administration of fasudil to FD mice alleviated several FD phenotypes, including LVH, renal fibrosis, anhidrosis, and heat insensitivity. Our findings demonstrate that fasudil is a novel candidate for FD therapy.


Assuntos
Doença de Fabry , Animais , Camundongos , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Células Endoteliais/metabolismo , alfa-Galactosidase/genética , Fenótipo , Terapia de Reposição de Enzimas
7.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474161

RESUMO

Obesity is a serious global health challenge, closely associated with numerous chronic conditions including type 2 diabetes. Anemarrhena asphodeloides Bunge (AA) known as Jimo has been used to address conditions associated with pathogenic heat such as wasting-thirst in Korean Medicine. Timosaponin A3 (TA3), a natural compound extracted from AA, has demonstrated potential therapeutic effects in various disease models. However, its effects on diabetes and obesity remain largely unexplored. We investigated the anti-obesity and anti-diabetic properties of TA3 using in vitro and in vivo models. TA3 treatment in NCI-H716 cells stimulated the secretion of glucagon-like peptide 1 (GLP-1) through the activation of phosphorylation of protein kinase A catalytic subunit (PKAc) and 5'-AMP-activated protein kinase (AMPK). In 3T3-L1 adipocytes, TA3 effectively inhibited lipid accumulation by regulating adipogenesis and lipogenesis. In a high-fat diet (HFD)-induced mice model, TA3 administration significantly reduced body weight gain and food intake. Furthermore, TA3 improved glucose tolerance, lipid profiles, and mitigated hepatic steatosis in HFD-fed mice. Histological analysis revealed that TA3 reduced the size of white adipocytes and inhibited adipose tissue generation. Notably, TA3 downregulated the expression of lipogenic factor, including fatty-acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP1c), emphasizing its potential as an anti-obesity agent. These findings revealed that TA3 may be efficiently used as a natural compound for tackling obesity, diabetes, and associated metabolic disorders, providing a novel approach for therapeutic intervention.


Assuntos
Fármacos Antiobesidade , Diabetes Mellitus Tipo 2 , Saponinas , Animais , Camundongos , Obesidade/metabolismo , Esteroides/farmacologia , Fármacos Antiobesidade/farmacologia , Adipogenia , Proteínas Quinases Ativadas por AMP/metabolismo , Lipídeos/farmacologia , Células 3T3-L1 , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
8.
Nature ; 541(7638): 481-487, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28099414

RESUMO

Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer's, Huntington's and Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.


Assuntos
Astrócitos/classificação , Astrócitos/patologia , Morte Celular , Sistema Nervoso Central/patologia , Microglia/patologia , Neurônios/patologia , Animais , Astrócitos/metabolismo , Axotomia , Técnicas de Cultura de Células , Sobrevivência Celular , Complemento C1q/metabolismo , Progressão da Doença , Humanos , Inflamação/patologia , Interleucina-1alfa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neurodegenerativas/patologia , Oligodendroglia/patologia , Fagocitose , Fenótipo , Ratos , Ratos Sprague-Dawley , Sinapses/patologia , Toxinas Biológicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
J Cell Physiol ; 237(1): 128-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311499

RESUMO

Glucose metabolism is a mechanism by which energy is produced in form of adenosine triphosphate (ATP) by mitochondria and precursor metabolites are supplied to enable the ultimate enrichment of mature metabolites in the cell. Recently, glycolytic enzymes have been shown to have unconventional but important functions. Among these enzymes, pyruvate kinase M2 (PKM2) plays several roles including having conventional metabolic enzyme activity, and also being a transcriptional regulator and a protein kinase. Compared with the closely related PKM1, PKM2 is highly expressed in cancer cells and embryos, whereas PKM1 is dominant in mature, differentiated cells. Posttranslational modifications such as phosphorylation and acetylation of PKM2 change its cellular functions. In particular, PKM2 can translocate to the nucleus, where it regulates the transcription of many target genes. It is notable that PKM2 also acts as a protein kinase to phosphorylate several substrate proteins. Besides cancer cells and embryonic cells, astrocytes also highly express PKM2, which is crucial for lactate production via expression of lactate dehydrogenase A (LDHA), while mature neurons predominantly express PKM1. The lactate produced in cancer cells promotes tumor progress and that in astrocytes can be supplied to neurons and may act as a major source for neuronal ATP energy production. Thereby, we propose that PKM2 along with its different posttranslational modifications has specific purposes for a variety of cell types, performing unique functions.


Assuntos
Leucemia Mieloide Aguda , Piruvato Quinase , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Glicólise/fisiologia , Humanos , Lactatos , Proteínas Quinases/metabolismo , Piruvato Quinase/genética
10.
Nature ; 535(7611): 294-8, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411634

RESUMO

Vascular and haematopoietic cells organize into specialized tissues during early embryogenesis to supply essential nutrients to all organs and thus play critical roles in development and disease. At the top of the haemato-vascular specification cascade lies cloche, a gene that when mutated in zebrafish leads to the striking phenotype of loss of most endothelial and haematopoietic cells and a significant increase in cardiomyocyte numbers. Although this mutant has been analysed extensively to investigate mesoderm diversification and differentiation and continues to be broadly used as a unique avascular model, the isolation of the cloche gene has been challenging due to its telomeric location. Here we used a deletion allele of cloche to identify several new cloche candidate genes within this genomic region, and systematically genome-edited each candidate. Through this comprehensive interrogation, we succeeded in isolating the cloche gene and discovered that it encodes a PAS-domain-containing bHLH transcription factor, and that it is expressed in a highly specific spatiotemporal pattern starting during late gastrulation. Gain-of-function experiments show that it can potently induce endothelial gene expression. Epistasis experiments reveal that it functions upstream of etv2 and tal1, the earliest expressed endothelial and haematopoietic transcription factor genes identified to date. A mammalian cloche orthologue can also rescue blood vessel formation in zebrafish cloche mutants, indicating a highly conserved role in vertebrate vasculogenesis and haematopoiesis. The identification of this master regulator of endothelial and haematopoietic fate enhances our understanding of early mesoderm diversification and may lead to improved protocols for the generation of endothelial and haematopoietic cells in vivo and in vitro.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Sequência Conservada , Epistasia Genética , Deleção de Genes , Sequências Hélice-Alça-Hélice , Hematopoese , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Mutação , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
11.
J Pharmacol Sci ; 145(3): 223-227, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33602502

RESUMO

In the central nervous system, microglia are regarded as the main cells responsible for phagocytosis, contributing to neural circuit refinement and homeostasis through synapse elimination. However, recent findings have shown that astrocytes also actively participate in synapse homeostasis through phagocytosing synapses, neuronal debris, axonal mitochondria, and pathological protein aggregates. In addition, it has been also suggested that astrocytes may regulate microglial phagocytosis by secreting molecules such as IL-33 and C3. Here, we have introduced key findings regarding direct and indirect astrocyte-mediated phagocytosis in CNS development, the sleep/wake cycle, and aging. We have also discussed current information about reactive astrocytes and their phagocytic function in the diseased brain, focusing on ischemia and Alzheimer's disease. Through this review, we aim to provide an overview of the current status as well as future perspectives regarding the important role of astrocytic control of phagocytosis.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Homeostase/fisiologia , Fagocitose/fisiologia , Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Astrócitos/metabolismo , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Complemento C3/metabolismo , Humanos , Interleucina-33/metabolismo , Microglia/fisiologia , Agregação Patológica de Proteínas , Sinapses/fisiologia
12.
FASEB J ; 33(2): 2072-2083, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30226812

RESUMO

Insulin is a critical signaling molecule in reducing blood glucose levels, and pyruvate dehydrogenase (PDH) is an essential enzyme in regulating glucose metabolism. However, the insulin effect on PDH function has not been well established. We observed that insulin attenuated the phosphorylation (p) of Ser264 (p-Ser264) in the PDH E1α subunit (PDHA1) in normal rat hepatocyte. In contrast, insulin induced an increase of p-Ser264 PDHA1 levels in hepatocellular carcinoma HepG2 and Huh7 cells. Insulin activated RhoA and Rho-dependent coiled coil kinase, an effector protein of active RhoA, which regulated p-Ser264 PDHA1 levels, along with both p-Ser9 and p-Tyr216 forms of glycogen synthase kinase-3ß (GSK-3ß) in HepG2 cells. Only p-Tyr216 GSK-3ß, the active form was involved in an increase of p-Ser264 PDHA1. Akt was also engaged in p-Ser9 of GSK-3ß, but neither in p-Tyr216 of GSK-3ß nor p-Ser264 of PDHA1 upon insulin. Reconstituted dephospho-mimic forms PDHA1 S264A and GSK-3ß Y216F impaired, but wild-types PDHA1 and GSK-3ß and phospho-mimic forms PDHA1 S264D and GSK-3ß Y216E increased cell proliferation upon insulin through expression of c-Myc and cyclin D1. Therefore, we propose that insulin-mediated p-PDHA1 is involved in the regulation of HepG2 cell proliferation through RhoA signaling pathway.-Islam, R., Kim, J.-G., Park, Y., Cho, J.-Y., Cap, K.-C., Kho, A.-R., Chung, W.-S., Suh, S.-W., Park, J.-B. Insulin induces phosphorylation of pyruvate dehydrogenase through RhoA activation pathway in HepG2 cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Piruvato Desidrogenase (Lipoamida)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Proliferação de Células/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Humanos , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase (Lipoamida)/genética , Ratos , Transdução de Sinais/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética
13.
Proc Natl Acad Sci U S A ; 114(38): E8072-E8080, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874532

RESUMO

Ineffective myelin debris clearance is a major factor contributing to the poor regenerative ability of the central nervous system. In stark contrast, rapid clearance of myelin debris from the injured peripheral nervous system (PNS) is one of the keys to this system's remarkable regenerative capacity, but the molecular mechanisms driving PNS myelin clearance are incompletely understood. We set out to discover new pathways of PNS myelin clearance to identify novel strategies for activating myelin clearance in the injured central nervous system, where myelin debris is not cleared efficiently. Here we show that Schwann cells, the myelinating glia of the PNS, collaborate with hematogenous macrophages to clear myelin debris using TAM (Tyro3, Axl, Mer) receptor-mediated phagocytosis as well as autophagy. In a mouse model of PNS nerve crush injury, Schwann cells up-regulate TAM phagocytic receptors Axl and Mertk following PNS injury, and Schwann cells lacking both of these phagocytic receptors exhibit significantly impaired myelin phagocytosis both in vitro and in vivo. Autophagy-deficient Schwann cells also display reductions in myelin clearance after mouse nerve crush injury, as has been recently shown following nerve transection. These findings add a mechanism, Axl/Mertk-mediated myelin clearance, to the repertoire of cellular machinery used to clear myelin in the injured PNS. Given recent evidence that astrocytes express Axl and Mertk and have previously unrecognized phagocytic potential, this pathway may be a promising avenue for activating myelin clearance after CNS injury.


Assuntos
Autofagia , Bainha de Mielina/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Fagocitose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/patologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , c-Mer Tirosina Quinase/genética , Receptor Tirosina Quinase Axl
14.
Nature ; 504(7480): 394-400, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24270812

RESUMO

To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.


Assuntos
Astrócitos/metabolismo , Proteínas de Membrana/metabolismo , Vias Neurais/metabolismo , Fagocitose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/citologia , Encéfalo/citologia , Técnicas In Vitro , Núcleos Laterais do Tálamo/citologia , Núcleos Laterais do Tálamo/metabolismo , Aprendizagem/fisiologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Vias Neurais/citologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Retina/fisiologia , c-Mer Tirosina Quinase
15.
Proc Natl Acad Sci U S A ; 113(36): 10186-91, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27559087

RESUMO

The strongest genetic risk factor influencing susceptibility to late-onset Alzheimer's disease (AD) is apolipoprotein E (APOE) genotype. APOE has three common isoforms in humans, E2, E3, and E4. The presence of two copies of the E4 allele increases risk by ∼12-fold whereas E2 allele is associated with an ∼twofold decreased risk for AD. These data put APOE central to AD pathophysiology, but it is not yet clear how APOE alleles modify AD risk. Recently we found that astrocytes, a major central nervous system cell type that produces APOE, are highly phagocytic and participate in normal synapse pruning and turnover. Here, we report a novel role for APOE in controlling the phagocytic capacity of astrocytes that is highly dependent on APOE isoform. APOE2 enhances the rate of phagocytosis of synapses by astrocytes, whereas APO4 decreases it. We also found that the amount of C1q protein accumulation in hippocampus, which may represent the accumulation of senescent synapses with enhanced vulnerability to complement-mediated degeneration, is highly dependent on APOE alleles: C1q accumulation was significantly reduced in APOE2 knock-in (KI) animals and was significantly increased in APOE4 KI animals compared with APOE3 KI animals. These studies reveal a novel allele-dependent role for APOE in regulating the rate of synapse pruning by astrocytes. They also suggest the hypothesis that AD susceptibility of APOE4 may originate in part from defective phagocytic capacity of astrocytes which accelerates the rate of accumulation of C1q-coated senescent synapses, enhancing synaptic vulnerability to classical-complement-cascade mediated neurodegeneration.


Assuntos
Alelos , Doença de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Astrócitos/imunologia , Predisposição Genética para Doença , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Animais , Apolipoproteína E2/imunologia , Apolipoproteína E3/genética , Apolipoproteína E3/imunologia , Apolipoproteína E4/imunologia , Astrócitos/ultraestrutura , Complemento C1q/genética , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Genótipo , Hipocampo/imunologia , Hipocampo/ultraestrutura , Humanos , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Fagocitose , Sinapses/imunologia , Sinapses/ultraestrutura
16.
Curr Opin Neurobiol ; 84: 102840, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38290370

RESUMO

Astrocytes interact with various cell types, including neurons, vascular cells, microglia, and peripheral immune cells. These interactions are crucial for regulating normal brain functions as well as modulating neuroinflammation in pathological conditions. Recent transcriptomic and proteomic studies have identified critical molecules involved in astrocytic crosstalk with other cells, shedding light on their roles in maintaining brain homeostasis in both healthy and diseased conditions. Astrocytes perform these various roles through either direct or indirect physical associations with neuronal synapses and vasculature. Furthermore, astrocytes can communicate with other immune cells, such as microglia, T cells, and natural killer cells, through secreted molecules during neuroinflammation. In this review, we discuss the critical molecular basis of this astrocytic crosstalk and the underlying mechanisms of astrocyte communication with other cells. We propose that astrocytes function as a central hub in inter-connecting neurons, vasculatures, and immune cells in healthy and diseased brains.


Assuntos
Astrócitos , Doenças Neuroinflamatórias , Humanos , Astrócitos/metabolismo , Proteômica , Encéfalo/fisiologia , Neurônios/fisiologia , Microglia/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38346858

RESUMO

Astrocytes play an integral role in the development, maturation, and refinement of neuronal circuits. Astrocytes secrete proteins and lipids that instruct the formation of new synapses and induce the maturation of existing synapses. Through contact-mediated signaling, astrocytes can regulate the formation and state of synapses within their domain. Through phagocytosis, astrocytes participate in the elimination of excess synaptic connections. In this work, we will review key findings on the molecular mechanisms of astrocyte-synapse interaction with a focus on astrocyte-secreted factors, contact-mediated mechanisms, and synapse elimination. We will discuss this in the context of typical brain development and maintenance, as well as consider the consequences of dysfunction in these pathways in neurological disorders, highlighting a role for astrocytes in health and disease.

18.
J Cereb Blood Flow Metab ; 44(7): 1102-1116, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38388375

RESUMO

Astrocytes undergo disease-specific transcriptomic changes upon brain injury. However, phenotypic changes of astrocytes and their functions remain unclear after hemorrhagic stroke. Here we reported hemorrhagic stroke induced a group of inflammatory reactive astrocytes with high expression of Gfap and Vimentin, as well as inflammation-related genes lipocalin-2 (Lcn2), Complement component 3 (C3), and Serpina3n. In addition, we demonstrated that depletion of microglia but not macrophages inhibited the expression of inflammation-related genes in inflammatory reactive astrocytes. RNA sequencing showed that blood-brain barrier (BBB) disruption-related gene matrix metalloproteinase-3 (MMP3) was highly upregulated in inflammatory reactive astrocytes. Pharmacological inhibition of MMP3 in astrocytes or specific deletion of astrocytic MMP3 reduced BBB disruption and improved neurological outcomes of hemorrhagic stroke mice. Our study demonstrated that hemorrhagic stroke induced a group of inflammatory reactive astrocytes that were actively involved in disrupting BBB through MMP3, highlighting a specific group of inflammatory reactive astrocytes as a critical driver for BBB disruption in neurological diseases.


Assuntos
Astrócitos , Barreira Hematoencefálica , Acidente Vascular Cerebral Hemorrágico , Metaloproteinase 3 da Matriz , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Metaloproteinase 3 da Matriz/metabolismo , Acidente Vascular Cerebral Hemorrágico/patologia , Acidente Vascular Cerebral Hemorrágico/metabolismo , Masculino , Inflamação/metabolismo , Inflamação/patologia , Complemento C3/metabolismo , Microglia/metabolismo , Microglia/patologia , Camundongos Endogâmicos C57BL , Lipocalina-2/metabolismo , Vimentina/metabolismo
19.
Mol Neurodegener ; 19(1): 25, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493185

RESUMO

Age-dependent accumulation of amyloid plaques in patients with sporadic Alzheimer's disease (AD) is associated with reduced amyloid clearance. Older microglia have a reduced ability to phagocytose amyloid, so phagocytosis of amyloid plaques by microglia could be regulated to prevent amyloid accumulation. Furthermore, considering the aging-related disruption of cell cycle machinery in old microglia, we hypothesize that regulating their cell cycle could rejuvenate them and enhance their ability to promote more efficient amyloid clearance. First, we used gene ontology analysis of microglia from young and old mice to identify differential expression of cyclin-dependent kinase inhibitor 2A (p16ink4a), a cell cycle factor related to aging. We found that p16ink4a expression was increased in microglia near amyloid plaques in brain tissue from patients with AD and 5XFAD mice, a model of AD. In BV2 microglia, small interfering RNA (siRNA)-mediated p16ink4a downregulation transformed microglia with enhanced amyloid phagocytic capacity through regulated the cell cycle and increased cell proliferation. To regulate microglial phagocytosis by gene transduction, we used poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles, which predominantly target microglia, to deliver the siRNA and to control microglial reactivity. Nanoparticle-based delivery of p16ink4a siRNA reduced amyloid plaque formation and the number of aged microglia surrounding the plaque and reversed learning deterioration and spatial memory deficits. We propose that downregulation of p16ink4a in microglia is a promising strategy for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Idoso , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/metabolismo , RNA Interferente Pequeno
20.
Proc Natl Acad Sci U S A ; 107(3): 1142-7, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20080554

RESUMO

Bmp signaling has been shown to regulate early aspects of pancreas development, but its role in endocrine, and especially beta-cell, differentiation remains unclear. Taking advantage of the ability in zebrafish embryos to cell-autonomously modulate Bmp signaling in single cells, we examined how Bmp signaling regulates the ability of individual endodermal cells to differentiate into beta-cells. We find that specific temporal windows of Bmp signaling prevent beta-cell differentiation. Thus, future dorsal bud-derived beta-cells are sensitive to Bmp signaling specifically during gastrulation and early somitogenesis stages. In contrast, ventral pancreatic cells, which require an early Bmp signal to form, do not produce beta-cells when exposed to Bmp signaling at 50 hpf, a stage when the ventral bud-derived extrapancreatic duct is the main source of new endocrine cells. Importantly, inhibiting Bmp signaling within endodermal cells via genetic means increased the number of beta-cells, at early and late stages. Moreover, inhibition of Bmp signaling in the late stage embryo using dorsomorphin, a chemical inhibitor of Bmp receptors, significantly increased beta-cell neogenesis near the extrapancreatic duct, demonstrating the feasibility of pharmacological approaches to increase beta-cell numbers. Our in vivo single-cell analyses show that whereas Bmp signaling is necessary initially for formation of the ventral pancreas, differentiating endodermal cells need to be protected from exposure to Bmps during specific stages to permit beta-cell differentiation. These results provide important unique insight into the intercellular signaling environment necessary for in vivo and in vitro generation of beta-cells.


Assuntos
Receptores de Ativinas Tipo I/fisiologia , Proteínas Morfogenéticas Ósseas/fisiologia , Indução Embrionária/fisiologia , Ilhotas Pancreáticas/citologia , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Primers do DNA , Hibridização In Situ
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA