Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Med Genet C Semin Med Genet ; : e32089, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884529

RESUMO

Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from Nicolaides-Baraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRM-associated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as Helsmoortel-Van Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotype-specific episignature. A distinct episignature was shared by 15 individuals with BIS-causing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotype-specific episignature biomarker shared across distinct genetic conditions that also exhibit unique gene-specific episignatures.

2.
Am J Med Genet A ; 191(5): 1350-1354, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680497

RESUMO

The ubiquitin-specific protease USP9X has been found to play a role in multiple aspects of neural development including processes of neuronal migrations. In males, hemizygous partial loss of function variants in USP9X lead to a clinical phenotype primarily characterized by intellectual disability, hypotonia, speech and language impairment, behavioral disturbances accompanied by additional clinical features with variable expressivity. Structural brain abnormalities are reported in all cases where neuro-imaging was performed. The most common radiological features described include hypoplasia/agenesis of the corpus callosum, widened ventricles, white matter disturbances, and cerebellar hypoplasia. Here we report a child harboring a missense variant in USP9X presenting with the classical neurodevelopmental phenotype and a previously unreported radiological picture of periventricular heterotopia. This case expands the phenotypic landscape of this emergent condition and supports the critical role of USP9X in neuronal migration processes.


Assuntos
Deficiência Intelectual , Heterotopia Nodular Periventricular , Humanos , Criança , Masculino , Heterotopia Nodular Periventricular/diagnóstico por imagem , Heterotopia Nodular Periventricular/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Mutação de Sentido Incorreto , Deficiências do Desenvolvimento/genética , Radiografia , Ubiquitina Tiolesterase/genética
3.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35146895

RESUMO

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Assuntos
Epilepsia , Doenças do Recém-Nascido , Deficiência Intelectual , Canais de Cátion TRPM , Criança , Deficiências do Desenvolvimento/genética , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Mutação de Sentido Incorreto , Canais de Cátion TRPM/genética , Sequenciamento do Exoma
4.
Neuropediatrics ; 52(6): 484-488, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33853164

RESUMO

KIRREL3 is a gene important for the central nervous system development-in particular for the process of neuronal migration, axonal fasciculation, and synaptogenesis-and colocalizes and cooperates in neurons with CASK gene. Alterations of KIRREL3 have been linked to neurodevelopmental disorders, ranging from developmental delay, to autism spectrum disorder, to attention deficit/hyperactivity disorder. The underlying mechanism is not yet fully understood, as it has been hypothesized a fully dominant effect, a risk factor role of KIRREL3 partially penetrating variants, and a recessive inheritance pattern. We report a novel and de novo KIRREL3 mutation in a child affected by severe neurodevelopmental disorder and with brain magnetic resonance imaging evidence of mega cisterna magna and mild cerebellar hypoplasia. This case strengthens the hypothesis that dominant KIRREL3 variants may lead to neurodevelopmental disruption; furthermore, given the strong interaction between KIRREL3 and CASK, we discuss as posterior fossa anomalies may also be part of the phenotype of KIRREL3-related syndrome.


Assuntos
Transtorno do Espectro Autista , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Cerebelo/anormalidades , Criança , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Humanos , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/genética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética
5.
Cytogenet Genome Res ; 160(2): 80-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32018271

RESUMO

Unbalanced X;autosome translocations are a rare occurrence with a wide variability in clinical presentation in which the X chromosome unbalance is usually mitigated by a favorable X inactivation pattern. In most cases, this compensation mechanism is incomplete, and the patients show a syndromic clinical presentation. We report the case of a family with 4 women, of 3 different generations, carrying an unbalanced X;7 translocation with a derivative X;7 chromosome and showing a skewed X inactivation pattern with a preferential activation of the normal X. None of the carriers show intellectual disability, and all of them have a very mild clinical presentation mainly characterized by gynecological/hormonal issues and autoimmune disorders. We underline the necessity of family testing for a correct genetic consultation, especially in the field of prenatal diagnosis. We indeed discuss the fact that X;autosome translocations may lead to self-immunization, as skewed X chromosome inactivation has already been proved to be related to autoimmune disorders.


Assuntos
Doenças Autoimunes/genética , Transtornos Cromossômicos/genética , Cromossomos Humanos X/genética , Translocação Genética , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Linhagem , Fenótipo , Gravidez , Inativação do Cromossomo X
6.
Cerebellum ; 19(5): 629-635, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32472476

RESUMO

Chromosomal microarray analysis is commonly used as screening test for children with neurodevelopmental issues, also in case of complex neurological phenotypes. Developmental delay/intellectual disability is a common presentation sign in pediatric ataxias, diseases with high clinical and genetic heterogeneity. In order to determine the diagnostic yield of Array-CGH in such conditions, all the tests performed in the last 10-year activity of a single referral center in children who present, besides the neurodevelopmental impairment, cerebellar abnormalities have been systematically gathered. The study demonstrates that, except for Dandy-Walker malformation or poly-malformative phenotypes, chromosomal microarray analysis should be discouraged as first-line diagnostic test in pediatric ataxias with neurodevelopmental disability.


Assuntos
Córtex Cerebelar/anormalidades , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Testes Diagnósticos de Rotina/métodos , Feminino , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Análise em Microsséries/métodos , Malformações do Sistema Nervoso/diagnóstico
7.
Am J Med Genet A ; 182(10): 2317-2324, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33043631

RESUMO

Potocki-Lupski syndrome is a condition mainly characterized by infantile hypotonia, developmental delay/intellectual disability (DD/ID), and congenital anomalies, caused by duplications of the 17p11.2 region, encompassing RAI1 gene. Its clinical presentation is extremely variable, especially for what concerns the cognitive level and the behavioral phenotype. Such aspects, as well as the dysmorphic/malformative ones, have been covered by previous studies; otherwise neurological features have never been systematically described. In order to delineate the neurological phenotype of Potocki-Lupski Syndrome, we collect an 8-patients cohort. Developmental milestones are delayed and a mild to moderate cognitive impairment is present in all patients, variably associated with features of autism spectrum disorder, behavioral disturb, and sleep disturb. Hypotonia appears a less frequent finding than what previously reported, while motor clumsiness/coordination impairment is frequent. EGG registration demonstrated a common pattern with excess of diffuse rhythmic activity in sleep phases or while the patient is falling asleep. Brain MRI did not reveal common anomalies, although unspecific white matter changes may be present. We discuss such findings and compare them to literature data, offering an overview on the neurological and cognitive-behavioral presentation of the syndrome.


Assuntos
Anormalidades Múltiplas/diagnóstico por imagem , Transtornos Cromossômicos/diagnóstico por imagem , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiência Intelectual/diagnóstico por imagem , Doenças do Sistema Nervoso/diagnóstico por imagem , Sono/fisiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Criança , Pré-Escolar , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Duplicação Cromossômica/genética , Disfunção Cognitiva/diagnóstico por imagem , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Eletroencefalografia , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Masculino , Hipotonia Muscular/diagnóstico por imagem , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Fenótipo
8.
Genet Med ; 21(12): 2807-2814, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31164752

RESUMO

PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.


Assuntos
Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Bases de Dados Genéticas , Aprendizado Profundo , Exoma/genética , Feminino , Genômica , Humanos , Masculino , Fenótipo , Software
10.
Cerebellum ; 18(5): 972-975, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410782

RESUMO

Spinocerebellar Ataxia 23 (SCAR23) is a newly described condition caused by mutations in TDP2 gene. To date, only four patients from two families have been reported, all carrying the same homozygous mutation. We describe a fifth patient, carrying a novel mutation in the same gene, thus confirming the role of TDP2 mutations in determining the disease and defining the main features SCAR23: pediatric onset ataxia and drug-resistant epilepsy and intellectual disability. We further show the clinical presentation which is associated with the neuroradiological evidence of progressive cerebellar atrophy, giving the evidence that SCAR23 can be classified as a degenerative condition.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsia Resistente a Medicamentos/genética , Deficiência Intelectual/genética , Mutação/genética , Diester Fosfórico Hidrolases/genética , Ataxias Espinocerebelares/genética , Adolescente , Epilepsia Resistente a Medicamentos/complicações , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Feminino , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico por imagem , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Sequenciamento do Exoma/métodos
12.
Cytogenet Genome Res ; 156(3): 127-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30448833

RESUMO

Kleefstra syndrome (KS) is a rare genetic condition resulting from either 9q34.3 microdeletions or mutations in the EHMT1 gene located in the same genomic region. To date, approximately 100 patients have been reported, thereby allowing the core phenotype of KS to be defined as developmental delay/intellectual disability, generalized hypotonia, neuropsychiatric anomalies, and a distinctive facial appearance. Here, to further expand the knowledge on genotype and phenotype of this condition, we report 2 novel cases: one patient carrying a 46-kb 9q34.3 deletion and showing macrocephaly never described in KS, and a second patient carrying a classic 9q34.3 deletion, presenting with a previously unreported skeletal feature (postaxial polydactyly of the right foot) and an unusual brain anomaly (olfactory bulb hypoplasia) observed via magnetic resonance imaging. Further, we provide a review of the current literature regarding KS and compare these 2 patients with those previously described, thereby confirming that the genotype-phenotype correlation in KS remains difficult to determine.


Assuntos
Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Megalencefalia/patologia , Bulbo Olfatório/patologia , Polidactilia/patologia , Dedos do Pé/anormalidades , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Anormalidades Craniofaciais/diagnóstico por imagem , Fácies , Genótipo , Cardiopatias Congênitas/diagnóstico por imagem , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/genética , Mutação , Bulbo Olfatório/diagnóstico por imagem , Fenótipo , Polidactilia/genética
13.
Am J Med Genet A ; 173(1): 200-206, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27615407

RESUMO

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder that primarily involves skeletal, ocular, and cardiovascular systems with large inter- and intra-familial variability in terms of age of onset, severity, and aortic disease. The causal gene, FBN1, encodes for fibrillin 1, a multi-domain glycoprotein essential for many biological functions, including deposition and formation of elastic fibers. Reports describing chromosomal alterations involving FBN1 are rare, but in the last years their number has increased after copy number state analyses, such as multiplex ligation-dependent probe amplification and microarray-based comparative genomic hybridization, were adopted as routine diagnostic tools. Herein we report a patient with MFS and an atypical facial appearance and neuropsychiatric involvement likely not attributable to MFS due to a 15q21.1 deletion that involves part of FBN1 and 13 additional contiguous genes listed in OMIM. We compare his phenotype with those of the few patients described in the literature who share similar 15q11.2 deletions. This report expands the phenotype of patients with 15q11.2 deletion involving FBN1 and its contiguous genes, and suggests a possible role for these other genes in the pathogenesis of the observed unusual clinical signs that are not explained by FBN1 haploinsufficiency. © 2016 Wiley Periodicals, Inc.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 15 , Fibrilina-1/genética , Estudos de Associação Genética , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenótipo , Adolescente , Hibridização Genômica Comparativa , Fácies , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino
14.
Cytogenet Genome Res ; 150(1): 40-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27852077

RESUMO

Koolen-de Vries syndrome (KdS) is a rare genetic condition characterized by typical facial dysmorphisms, cardiac and renal defects, skeletal anomalies, developmental delay, and intellectual disability of variable level. It is caused by a 440-680-kb deletion in the 17q21.31 region, encompassing CRHR1, MAPT, IMP5, STH, and KANSL1, or by an intragenic KANSL1 mutation. The majority of the patients reported are pediatric or young adults, and long-term studies able to define the prognosis of the disease are lacking. Here, we report a patient in the fourth decade misdiagnosed in the past as classical Ehlers-Danlos syndrome for the presence of generalized joint hypermobility, who carried a 546-kb deletion in 17q21.31, and compare his phenotype with those of the few KdS adults (aged >18 years) described so far. We observed a favorable prognosis of epilepsy and cardiovascular signs and reduction of joint hypermobility with age, thus providing insight into the natural history of the disorder.


Assuntos
Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Envelhecimento/fisiologia , Criança , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Diagnóstico Tardio , Deficiências do Desenvolvimento/genética , Erros de Diagnóstico , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Epilepsia/genética , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Adulto Jovem
15.
Am J Med Genet A ; 170(8): 2031-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27149304

RESUMO

FKBP14-related Ehlers-Danlos syndrome (EDS) is an extremely rare recessive connective tissue disorder described for the first time in 2012 by Baumann and coworkers. The causal gene, FKBP14, encodes a member of the F506-binding family of peptidyl-prolyl cis-trans isomerases. The paucity of patients described so far makes this disorder poorly defined at clinical level. Here, we report an additional pediatric patient, who is compound heterozygous for a recurrent and a novel FKBP14 mutation, and compare his phenotype with those available in literature. This evaluation confirms that kyphoscoliosis (either progressive or non-progressive), myopathy, joint hypermobility, and congenital hearing loss (sensorineural, conductive, or mixed) are the typical features of the syndrome. Since the patient showed a severe cardiovascular event in childhood and atlantoaxial instability, this report expands the phenotype of the disorder and the allelic repertoire of FKBP14. © 2016 Wiley Periodicals, Inc.


Assuntos
Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Estudos de Associação Genética , Peptidilprolil Isomerase/genética , Fenótipo , Criança , Análise Mutacional de DNA , Éxons , Fácies , Heterozigoto , Humanos , Cifose/diagnóstico , Cifose/genética , Masculino , Mutação , Radiografia , Escoliose/diagnóstico , Escoliose/genética
17.
Psychiatr Genet ; 34(1): 19-23, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084626

RESUMO

Patients carrying 22q13.33 duplication present variable neurodevelopmental phenotype. Among these, patients with genetic alteration disrupting SHANK3 gene are very rare and they also present neurodevelopmental disorder such as autism spectrum disorder and intellectual disability. The real incidence is unknown because mild and variable phenotype could cause reduction in diagnosed cases. We describe the first case of 22q13.33 microduplication disrupting SHANK3 gene, inherited from mother to son, that presents a "persistent" language and speech sound disorder as main symptom without intellectual disability and autism spectrum disorder. More clinical reports with accurate phenotype description are needed to better define the profile of carriers of this genetic alteration.


Assuntos
Transtorno do Espectro Autista , Transtornos Cromossômicos , Deficiência Intelectual , Transtorno Fonológico , Masculino , Feminino , Humanos , Deleção Cromossômica , Transtornos Cromossômicos/genética , Mães , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Transtorno Fonológico/genética , Idioma , Cromossomos Humanos Par 22/genética , Proteínas do Tecido Nervoso/genética
18.
Front Neurol ; 14: 1199095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545716

RESUMO

Infantile idiopathic nystagmus (IIN) is an oculomotor disorder characterized by involuntary bilateral, periodic ocular oscillations, predominantly on the horizontal axis. X-linked IIN (XLIIN) is the most common form of congenital nystagmus, and the FERM domain-containing gene (FRMD7) is the most common cause of pathogenesis, followed by mutations in GPR143. To date, more than 60 pathogenic FRMD7 variants have been identified, and the physiopathological pathways leading to the disease are not yet completely understood. FRMD7-associated nystagmus usually affects male patients, while it shows incomplete penetrance in female patients, who are mostly asymptomatic but sometimes present with mild ocular oscillations or, occasionally, with clear nystagmus. Here we report the first case of a patient with Turner syndrome and INN in an XLIIN pedigree, in which we identified a novel frameshift mutation (c.1492dupT) in the FRMD7 gene: the absence of one X chromosome in the patient unmasked the presence of the familial genetic nystagmus.

19.
Neurol Genet ; 9(2): e200049, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090941

RESUMO

Background and Objectives: Heterozygous mutations or deletions of the EBF3 gene are known to cause a syndrome characterized by intellectual disability, neurodevelopmental disorders, facial dysmorphisms, hypotonia, and ataxia; the latter is quite common despite in most patients brain MRI is reported to be normal. Despite the predominant neurologic involvement of EBF3-related syndrome, a systematic definition of neurologic, cognitive/behavioral, and neuroradiologic features is lacking. Methods: We report on 6 patients (2 females and 4 males, age range 2-12 years), of whom 4 carrying a heterozygous point mutation of the EBF3 gene and 2 with 10q26 deletion encompassing the gene, diagnosed at Carlo Besta Neurologic Institute of Milan, Italy. Clinical evaluation was performed by a pediatric neurologist and pediatric dysmorphologist; ataxia severity was rated by Scale for the Assessment and Rating of Ataxia (SARA); brain MRIs were reviewed by expert neuroradiologists; general quotient levels were obtained through standardized Griffiths Mental Development Scales. Patients carrying a 10q26.3 deletion were diagnosed by array-CGH, whereas EBF3 variants were detected by whole exome sequencing. Results: Phenotype was consistent in all patients, but with wide variability in severity. Developmental milestones were invariably delayed and resulted in an extremely variable cognitive impairment. All patients showed ataxic signs, as confirmed by SARA scores, often associated with hypotonia. Brain MRI revealed in all children a cerebellar malformation with vermis hypoplasia and a peculiar foliation anomaly characterized by a radial disposition of cerebellar folia (dandelion sign). Neurophysiologic examinations were unremarkable. Discussion: EBF3-related syndrome has been so far described as a neurodevelopmental condition with dysmorphic traits, with limited emphasis on the neurologic features; we highlight the predominant neurologic involvement of these patients, which can be explained at least in part by the underlying cerebellar malformation. We therefore propose that EBF3-related syndrome should be classified and treated as a congenital, nonprogressive ataxia.

20.
Brain Sci ; 13(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37190585

RESUMO

We recently investigated the role of the cerebellum during development, reporting that children with genetic slow-progressive ataxia (SlowP) show worse postural control during quiet stance and gait initiation compared to healthy children (H). Instead, children with genetic non-progressive ataxia (NonP) recalled the behavior of H. This may derive from compensatory networks, which are hindered by disease progression in SlowP while free to develop in NonP. In the aim of extending our findings to intra-limb postural control, we recorded, in 10 NonP, 10 SlowP and 10 H young patients, Anticipatory Postural Adjustments (APAs) in the proximal muscles of the upper-limb and preceding brisk index finger flexions. No significant differences in APA timing occurred between NonP and H, while APAs in SlowP were delayed. Indeed, the excitatory APA in Triceps Brachii was always present but significantly delayed with respect to both H and NonP. Moreover, the inhibitory APAs in the Biceps Brachii and Anterior Deltoid, which are normally followed by a late excitation, could not be detected in most SlowP children, as if inhibition was delayed to the extent where there was overlap with a late excitation. In conclusion, disease progression seems to be detrimental for intra-limb posture, supporting the idea that inter- and intra-limb postures seemingly share the same control mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA