Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878154

RESUMO

Size-fractionated particulate mercury (PHg) measurements were performed from November 2017 to January 2018 at Terra Nova Bay (Antarctica) for the first time. Samples were collected every 10 days by a six-stage high-volume cascade impactor with size classes between 10 µm and 0.49 µm. Total PHg concentrations were maxima (87 ± 8 pg m-3) in November, then decreased to values ~40% lower and remained almost constant until the end of the sampling period (~30 pg m-3). The trimodal aerosol mass distribution reveals that from 30% to 90% of the total PHg came in the size > 1.0 µm. Hg in the two coarse fractions was probably produced by the adsorption of oxidized Hg species transported by air masses from the Antarctic plateau or produced locally by sea ice edges. PHg in accumulation mode seemed to be related to gas-particle partitioning with sea salt aerosol. Finally, average dry deposition fluxes of PHg were calculated to be 0.36 ± 0.21 ng m-2 d-1 in the accumulation mode, 47 ± 44 ng m-2 d-1 in the first coarse mode, and 37 ± 31 ng m-2 d-1 in the second coarse mode. The present work contributed to the comprehension of the Hg biogeochemical cycle, but further research studies are needed.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Mercúrio/química , Material Particulado/química , Estações do Ano , Regiões Antárticas , Monitoramento Ambiental , Tamanho da Partícula , Tempo (Meteorologia)
2.
Sci Total Environ ; 810: 151285, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740657

RESUMO

Ten years of data of biogenic aerosol (methane sulfonic acid, MSA, and non-sea salt sulfate, nssSO42-) collected at Concordia Station in the East Antarctic plateau (75° 06' S, 123° 20' E) are interpreted as a function of the Southern Annular Mode (SAM), Chlorophyll-a concentration (Chl-a; a proxy for phytoplankton biomass), sea ice extent and area. It is possible to draw three different scenarios that link these parameters in early, middle, and late summer. In early summer, the biogenic aerosol is significantly correlated to sea ice retreats through the phytoplankton biomass increases. Chl-a shows a significant correlation with nssSO42- in the finest fraction (< 1 µm). In contrast, only Chl-a in West Pacific and Indian Ocean sectors correlates with MSA in the coarse fraction. The transport routes towards the inner Antarctic plateau and aerosol formation processes could explain the different correlation patterns of the two compounds both resulting from the DMS oxidation. In mid-summer, Chl-a concentrations are at the maximum and are not related to sea ice melting. Due to the complexity of transport processes of air masses towards the Antarctic plateau, the MSA concentrations are low and not related to Chl-a concentration. In late summer, MSA and nssSO42- present the highest concentrations in their submicrometric aerosol fraction, and both are significantly correlated with Chl-a but not with the sea ice. In early and mid-summer, the enhanced efficiency of transport processes from all the surrounding oceanic sectors with air masses traveling at low elevation can explain the highest concentrations of nssSO42- and especially MSA. Finally, considering the entire time series, MSA shows significant year-to-year variability. This variability is significantly correlated with SAM but with a different time lag in early (0-month lag) and late summer (4-months lag). This correlation likely occurs through the effect of the SAM on phytoplankton blooms.


Assuntos
Atmosfera , Água do Mar , Aerossóis , Regiões Antárticas , Oceano Índico , Estações do Ano
3.
Ann Ist Super Sanita ; 52(3): 325-337, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27698291

RESUMO

Observed changes at the global scale. An increase of the annual mean global temperature and changes of other climate parameters have been observed in the last century. The global temperature and the atmospheric concentration of greenhouse gases are changing at a very fast pace compared to those found in palaeoclimate records. Changes in the Mediterranean. Variations of some climate change indicators can be much larger at the local than at the global scale, and the Mediterranean has been indicated among the regions most sensitive to climate change, also due to the increasing anthropogenic pressure. Model projections for the Mediterranean foresee further warming, droughts, and long-lasting modifications. IMPACTS: Regional climate changes impact health and ecosystems, creating new risks, determined not only by weather events, but also by changing exposures and vulnerabilities. These issues, and in particular those regarding occupational safety, have not been sufficiently addressed to date.


Assuntos
Mudança Climática , Efeito Estufa , Humanos , Região do Mediterrâneo , Saúde Ocupacional/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA