Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nat Immunol ; 25(8): 1474-1488, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38956378

RESUMO

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.


Assuntos
Células Matadoras Naturais , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Células Matadoras Naturais/imunologia , Transcriptoma , Neoplasias/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Tonsila Palatina/imunologia , Tonsila Palatina/citologia , Perfilação da Expressão Gênica , Pulmão/imunologia , Citocinas/metabolismo
2.
Immunity ; 48(4): 760-772.e4, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29625893

RESUMO

Cerebral malaria is a deadly complication of Plasmodium infection and involves blood brain barrier (BBB) disruption following infiltration of white blood cells. During experimental cerebral malaria (ECM), mice inoculated with Plasmodium berghei ANKA-infected red blood cells develop a fatal CM-like disease caused by CD8+ T cell-mediated pathology. We found that treatment with interleukin-15 complex (IL-15C) prevented ECM, whereas IL-2C treatment had no effect. IL-15C-expanded natural killer (NK) cells were necessary and sufficient for protection against ECM. IL-15C treatment also decreased CD8+ T cell activation in the brain and prevented BBB breakdown without influencing parasite load. IL-15C induced NK cells to express IL-10, which was required for IL-15C-mediated protection against ECM. Finally, we show that ALT-803, a modified human IL-15C, mediates similar induction of IL-10 in NK cells and protection against ECM. These data identify a regulatory role for cytokine-stimulated NK cells in the prevention of a pathogenic immune response.


Assuntos
Interleucina-10/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Proteínas/farmacologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/imunologia , Interleucina-10/biossíntese , Ativação Linfocitária/imunologia , Malária Cerebral/microbiologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes de Fusão
3.
Blood ; 141(8): 846-855, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36327161

RESUMO

The development of methods to derive induced pluripotent stem cells (iPSCs) has propelled stem cell research, and has the potential to revolutionize many areas of medicine, including cancer immunotherapy. These cells can be propagated limitlessly and can differentiate into nearly any specialized cell type. The ability to perform precise multigene engineering at the iPSC stage, generate master cell lines after clonal selection, and faithfully promote differentiation along natural killer (NK) cells and T-cell lineages is now leading to new opportunities for the administration of off-the-shelf cytotoxic lymphocytes with direct antigen targeting to treat patients with relapsed/refractory cancer. In this review, we highlight the recent progress in iPSC editing and guided differentiation in the development of NK- and T-cell products for immunotherapy. We also discuss some of the potential barriers that remain in unleashing the full potential of iPSC-derived cytotoxic effector cells in the adoptive transfer setting, and how some of these limitations may be overcome through gene editing.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Humanos , Linfócitos T , Células Matadoras Naturais , Imunoterapia , Neoplasias/terapia , Imunoterapia Adotiva
4.
J Immunol ; 211(4): 539-550, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37341510

RESUMO

CMV can elicit adaptive immune features in both mouse and human NK cells. Mouse Ly49H+ NK cells expand 100- to 1000-fold in response to mouse CMV infection and persist for months after exposure. Human NKG2C+ NK cells also expand after human CMV (HCMV) infection and persist for months. The clonal expansion of adaptive NK cells is likely an energy-intensive process, and the metabolic requirements that support adaptive NK cell expansion and persistence remain largely uncharacterized. We previously reported that NK cells from HCMV-seropositive donors had increased maximum capacity for both glycolysis and mitochondrial oxidative phosphorylation relative to NK cells from HCMV-seronegative donors. In this article, we report an extension of this work in which we analyzed the metabolomes of NK cells from HCMV-seropositive donors with NKG2C+ expansions and NK cells from HCMV seronegative donors without such expansions. NK cells from HCMV+ donors exhibited striking elevations in purine and pyrimidine deoxyribonucleotides, along with moderate increases in plasma membrane components. Mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that, as a part of mTOR complex 1 (mTORC1), bridges nutrient signaling to metabolic processes necessary for cell growth. Signaling through mTORC1 induces both nucleotide and lipid synthesis. We observed elevated mTORC1 signaling on activation in both NKG2C- and NKG2C+ NK cells from HCMV+ donors relative to those from HCMV- donors, demonstrating a correlation between higher mTORC1 activity and synthesis of key metabolites for cell growth and division.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Animais , Camundongos , Células Matadoras Naturais , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metaboloma , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo
5.
Blood ; 140(23): 2451-2462, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917442

RESUMO

Substantial numbers of B cell leukemia and lymphoma patients relapse due to antigen loss or heterogeneity after anti-CD19 chimeric antigen receptor (CAR) T cell therapy. To overcome antigen escape and address antigen heterogeneity, we engineered induced pluripotent stem cell-derived NK cells to express both an NK cell-optimized anti-CD19 CAR for direct targeting and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity. In addition, we introduced a membrane-bound IL-15/IL-15R fusion protein to promote in vivo persistence. These engineered cells, termed iDuo NK cells, displayed robust CAR-mediated cytotoxic activity that could be further enhanced with therapeutic antibodies targeting B cell malignancies. In multiple in vitro and xenogeneic adoptive transfer models, iDuo NK cells exhibited robust anti-lymphoma activity. Furthermore, iDuo NK cells effectively eliminated both CD19+ and CD19- lymphoma cells and displayed a unique propensity for targeting malignant cells over healthy cells that expressed CD19, features not achievable with anti-CAR19 T cells. iDuo NK cells combined with therapeutic antibodies represent a promising approach to prevent relapse due to antigen loss and tumor heterogeneity in patients with B cell malignancies.


Assuntos
Leucemia , Neoplasias , Humanos , Deriva e Deslocamento Antigênicos , Leucemia/terapia , Células Matadoras Naturais
6.
Immunity ; 42(3): 443-56, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25786176

RESUMO

The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets.


Assuntos
Anticorpos/imunologia , Infecções por Citomegalovirus/genética , Epigênese Genética/imunologia , Células Matadoras Naturais/imunologia , Fatores de Transcrição Kruppel-Like/imunologia , Linfócitos T Citotóxicos/imunologia , Imunidade Adaptativa , Proliferação de Células , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/virologia , Metilação de DNA , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Células Matadoras Naturais/classificação , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Análise em Microsséries , Subfamília C de Receptores Semelhantes a Lectina de Células NK/deficiência , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Regiões Promotoras Genéticas , Proteína com Dedos de Zinco da Leucemia Promielocítica , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/imunologia , Receptores de IgG/deficiência , Receptores de IgG/genética , Receptores de IgG/imunologia , Transdução de Sinais , Quinase Syk , Linfócitos T Citotóxicos/patologia , Linfócitos T Citotóxicos/virologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
7.
J Immunol ; 205(6): 1513-1523, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32759296

RESUMO

Variegated expression of killer Ig-like receptors (KIR) in human NK cells is a stochastic process exclusive to subsets of mature NK cells and CD8+ T cells. Allele-specific KIR expression is maintained by DNA methylation within the proximal promoter regions. Because KIR genes are densely methylated in NK cell progenitors, there is an implied stage of human NK cell development in which DNA demethylation takes place to allow for active transcription. When and how this process occurs is unknown. In this study, we show that KIR proximal promoters are densely methylated in less mature CD56bright NK cells and are progressively demethylated in CD56dim NK cells as they mature and acquire KIR. We hypothesized that ten-eleven translocation (TET) enzymes, which oxidize 5mC on DNA could mediate KIR promoter demethylation. The catalytic efficiency of TET enzymes is known to be enhanced by ascorbic acid. We found that the addition of ascorbic acid to ex vivo culture of sorted CD56bright NK cells increased the frequency of KIR expression in a dose-dependent manner and facilitated demethylation of proximal promoters. A marked enrichment of the transcription factor Runx3 as well as TET2 and TET3 was observed within proximal KIR promoters in CD56bright NK cells cultured with ascorbic acid. Additionally, overexpression of TET3 and Runx3 promoted KIR expression in CD56bright NK cells and NK-92 cells. Our results show that KIR promoter demethylation can be induced in CD56bright, and this process is facilitated by ascorbic acid.


Assuntos
Ácido Ascórbico/metabolismo , Células Matadoras Naturais/metabolismo , Receptores KIR/metabolismo , Antígeno CD56/metabolismo , Diferenciação Celular , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desmetilação , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação da Expressão Gênica , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores KIR/genética
8.
Mol Ther ; 29(12): 3410-3421, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174441

RESUMO

Natural killer (NK) cells mediate the cytolysis of transformed cells and are currently used as an adoptive cellular therapy to treat cancer. Infection with human cytomegalovirus has been shown to expand a subset of "adaptive" NK cells expressing the activation receptor NKG2C that have preferred functional attributes distinct from conventional NK cells. Because NKG2C delivers a strong activating signal to NK cells, we hypothesized that NKG2C could specifically trigger NK-cell-mediated antitumor responses. To elicit a tumor-directed response from NKG2C+ NK cells, we created an anti-NKG2C/IL-15/anti-CD33 killer engager called NKG2C-KE that directs NKG2C+ cells to target CD33+ cells and tumor-associated antigen expressed by acute myelogenous leukemia cells. The NKG2C-KE induced specific degranulation, interferon-γ production, and proliferation of NKG2C-expressing NK cells from patients who reactivated cytomegalovirus after allogeneic transplantation. The NKG2C-KE was also tested in a more homogeneous system using induced pluripotent stem cell (iPSC)-derived NK (iNK) cells that have been engineered to express NKG2C at high levels. The NKG2C-KE triggered iNK-cell-mediated cytotoxicity against CD33+ cells and primary AML blasts. The NKG2C-KE-specific interaction with adaptive NK and NKG2C+ iNK cells represents a new immunotherapeutic paradigm that uniquely engages highly active NK cells to induce cytotoxicity against AML through redirected targeting.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Citomegalovirus , Humanos , Interleucina-15 , Células Matadoras Naturais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
9.
Cytotherapy ; 23(8): 704-714, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33893050

RESUMO

BACKGROUND AIMS: Adoptive transfer of suppressive CD4+CD25+ thymic regulatory T cells (tTregs) can control auto- and alloimmune responses but typically requires in vitro expansion to reach the target cell number for efficacy. Although the adoptive transfer of expanded tTregs purified from umbilical cord blood ameliorates graft-versus-host disease in patients receiving hematopoietic stem cell transplantation for lymphohematopoietic malignancy, individual Treg products of 100 × 106 cells/kg are manufactured over an extended 19-day time period using a process that yields variable products and is both laborious and costly. These limitations could be overcome with the availability of 'off the shelf' Treg. RESULTS: Previously, the authors reported a repetitive restimulation expansion protocol that maintains Treg phenotype (CD4+25++127-Foxp3+), potentially providing hundreds to thousands of patient infusions. However, repetitive stimulation of effector T cells induces a well-defined program of exhaustion that leads to reduced T-cell survival and function. Unexpectedly, the authors found that multiply stimulated human tTregs do not develop an exhaustion signature and instead maintain their Treg gene expression pattern. The authors also found that tTregs expanded with one or two rounds of stimulation and tTregs expanded with three or five rounds of stimulation preferentially express distinct subsets of a group of five transcription factors that lock in Treg Foxp3expression, Treg stability and suppressor function. Multiply restimulated Tregs also had increased transcripts characteristic of T follicular regulatory cells, a Treg subset. DISCUSSION: These data demonstrate that repetitively expanded human tTregs have a Treg-locking transcription factor with stable FoxP3 and without the classical T-cell exhaustion gene expression profile-desirable properties that support the possibility of off-the-shelf Treg therapeutics.


Assuntos
Doença Enxerto-Hospedeiro , Linfócitos T Reguladores , Transferência Adotiva , Sangue Fetal , Fatores de Transcrição Forkhead/genética , Humanos
10.
Trends Immunol ; 37(7): 451-461, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27160662

RESUMO

Natural killer (NK) cells were previously considered to represent short-lived, innate lymphocytes. However, mouse models have revealed expansion and persistence of differentiated NK cell subsets in response to cytomegalovirus (CMV) infection, paralleling antigen-specific T cell differentiation. Congruently, analyses of humans have uncovered CMV-associated NK cell subsets characterized by epigenetic diversification processes that lead to altered target cell specificities and functional capacities. Here, focusing on responses to viruses, we review similarities and differences between mouse and human adaptive NK cells, identifying molecular analogies that may be key to transcriptional reprogramming and functional alterations. We discuss possible molecular mechanisms underlying epigenetic diversification and hypothesize that processes driving epigenetic diversification may represent a more widespread mechanism for fine-tuning and optimization of cellular immunity.


Assuntos
Imunidade Adaptativa , Seleção Clonal Mediada por Antígeno , Infecções por Citomegalovirus/imunologia , Epigênese Genética , Células Matadoras Naturais/imunologia , Imunidade Adaptativa/genética , Animais , Biodiversidade , Diferenciação Celular , Reprogramação Celular , Humanos , Camundongos , Linfócitos T/imunologia
11.
PLoS Biol ; 14(8): e1002526, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27500644

RESUMO

It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores KIR/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Citometria de Fluxo , Variação Genética/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Interferência de RNA , Receptores KIR/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
13.
Semin Immunol ; 26(2): 114-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24594002

RESUMO

Bone marrow-derived natural killer (NK) cells constitute the major subset of cytotoxic lymphocytes in peripheral blood. They provide innate defense against intracellular infection or malignancy and contribute to immune homeostasis. Large numbers of NK cells are also present in tissues, including the liver and uterus, where they can mediate immunosurveillance but also play important roles in tissue remodeling and vascularization. Here, we review the pathways involved in NK cell lineage commitment and differentiation, discussing relationships to other lymphocyte populations and highlighting genetic determinants. Characterizing NK cells from distinct tissues and during infections have revealed subset specializations, reflecting inherent cellular plasticity. In this context, we discuss how different environmental and inflammatory stimuli may shape NK cells. Particular emphasis is placed on genes identified as being critical for NK cell development, differentiation, and function from studies of model organisms or associations with disease. Such studies are also revealing important cellular redundancies. Here, we provide a view of the genetic framework constraining NK cell development and function, pinpointing molecules required for these processes but also underscoring plasticity and redundancy that may underlie robust immunological function. With this view, built in redundancy may highlight the importance of NK cells to immunity.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Diferenciação Celular/imunologia , Humanos , Imunidade/fisiologia , Células Matadoras Naturais/citologia
14.
Immunol Rev ; 258(1): 45-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24517425

RESUMO

Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , Animais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Tolerância Imunológica , Imunidade Inata , Memória Imunológica , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Resultado do Tratamento
15.
Curr Top Microbiol Immunol ; 395: 225-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26037048

RESUMO

Hematopoietic cell transplantation (HCT) has been used as a part of cancer therapy for over half a decade. Beyond the necessity for donor-derived cells to reconstitute hematopoiesis after radiation and chemotherapy, immunologic reconstitution from allogeneic cells is important for the elimination of residual tumor cells. Natural killer (NK) cells are first among lymphocytes to reconstitute post-transplant and protect against cancer relapse. In this review, we provide a historical perspective on the role of NK cells in cancer control in the transplant setting and focus on current research aimed at improving NK cell responses for therapeutic benefit.


Assuntos
Transferência Adotiva/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células Matadoras Naturais/imunologia , Transferência Adotiva/história , Animais , Transplante de Células-Tronco Hematopoéticas/história , História do Século XX , História do Século XXI , Humanos , Imunoterapia Adotiva
16.
J Immunol ; 195(10): 4760-70, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26438524

RESUMO

NK cell's killing is a tightly regulated process under the control of specific cytoskeletal proteins. This includes Wiskott-Aldrich syndrome protein, Wiskott-Aldrich syndrome protein-interacting protein, cofilin, Munc13-4, and nonmuscle myosin IIA (NMIIA). These proteins play a key role in controlling NK-mediated cytotoxicity either via regulating the attachment of lytic granules to the actin-based cytoskeleton or via promoting the cytoskeletal reorganization that is requisite for lytic granule release. UNC-45A is a highly conserved member of the UNC-45/CRO1/She4p family of proteins that act as chaperones for both conventional and nonconventional myosin. Although we and others have shown that in lower organisms and in mammalian cells NMIIA-associated functions, such as cytokinesis, cell motility, and organelle trafficking, are dependent upon the presence of UNC-45A, its role in NK-mediated functions is largely unknown. In this article, we describe UNC-45A as a key regulator of NK-mediated cell toxicity. Specifically we show that, in human NK cells, UNC-45A localize at the NK cell immunological synapse of activated NK cells and is part of the multiprotein complex formed during NK cell activation. Furthermore, we show that UNC-45A is disposable for NK cell immunological synapse formation and lytic granules reorientation but crucial for lytic granule exocytosis. Lastly, loss of UNC-45A leads to reduced NMIIA binding to actin, suggesting that UNC-45A is a crucial component in regulating human NK cell cytoskeletal dynamics via promoting the formation of actomyosin complexes.


Assuntos
Exocitose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/fisiologia , Miosina não Muscular Tipo IIA/imunologia , Vesículas Secretórias/imunologia , Fatores de Despolimerização de Actina/imunologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/imunologia , Actinas/metabolismo , Transporte Biológico Ativo/fisiologia , Movimento Celular/fisiologia , Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Feminino , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Masculino , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Vesículas Secretórias/metabolismo
17.
Genes Immun ; 16(1): 89-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25410655

RESUMO

Natural killer (NK) and T lymphocytes share many properties, yet only NK cells respond rapidly to infection and cancer without pre-activation. We found that few microRNAs (miRNAs) differed significantly between human NK and T cells. Among those miRNAs, miR-181a and miR-181b levels rose during NK cell differentiation. Prior studies indicate that miR-181a and miR-181b are critical for human NK cell development and are co-transcribed from genes on chromosome 1 (MIR181A1B1) and on chromosome 9 (MIR181A2B2). We mapped human MIR181A1B1 and MIR181A2B2 transcription start sites to 78.3 kb and 34.0 kb upstream of the mature miRNAs, generating predominantly unspliced transcripts of 80-127 kb and ~60 kb, respectively. Unlike mouse thymocytes, human T cells expressed both MIR181A1B1 and MIR181A2B2. We tested the hypothesis that NK cells differentially transcribe the two genes during development and in response to immune regulatory cytokines. During NK-cell differentiation, MIR181A2B2 expression rose markedly and exceeded that of MIR181A1B1. TGF-ß treatment increased NK-cell MIR181A2B2 transcription, whereas IL-2, IL-15 and IL-12/IL-18 treatments upregulated MIR181A1B1. The MIR181A2B2 promoter was strongly transactivated by SMAD3 and SMAD4 transcription factors, suggesting that TGF-ß signaling upregulates MIR181A2B2 expression, at least in part, through SMAD-dependent promoter activation.


Assuntos
Células Matadoras Naturais/imunologia , MicroRNAs/genética , Sítio de Iniciação de Transcrição , Expressão Gênica , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Regiões Promotoras Genéticas , Linfócitos T/citologia , Linfócitos T/imunologia
18.
Biol Blood Marrow Transplant ; 21(9): 1653-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26055301

RESUMO

Cytomegalovirus (CMV) reactivates in >30% of CMV-seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of natural killer (NK) cells expressing NKG2C, CD57, and inhibitory killer cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation after HCT. These NK cells persist after the resolution of infection and display "adaptive" or memory properties. Despite these findings, the differential impact of persistent/inactive versus reactivated CMV on NK versus T cell maturation after HCT from different graft sources has not been defined. We compared the phenotype of NK and T cells from 292 recipients of allogeneic sibling (n = 118) or umbilical cord blood (UCB; n = 174) grafts based on recipient pretransplantation CMV serostatus and post-HCT CMV reactivation. This cohort was utilized to evaluate CMV-dependent increases in KIR-expressing NK cells exhibiting an adaptive phenotype (NKG2C(+)CD57(+)). Compared with CMV-seronegative recipients, those who reactivated CMV had the highest adaptive cell frequencies, whereas intermediate frequencies were observed in CMV-seropositive recipients harboring persistent/nonreplicating CMV. The same effect was observed in T cells and CD56(+) T cells. These adaptive lymphocyte subsets were increased in CMV-seropositive recipients of sibling but not UCB grafts and were correlated with lower rates of CMV reactivation (sibling 33% versus UCB 51%; P < .01). These data suggest that persistent/nonreplicating recipient CMV induces rapid production of adaptive NK and T cells from mature cells from sibling but not UCB grafts. These adaptive lymphocytes are associated with protection from CMV reactivation.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas , Receptores KIR/imunologia , Irmãos , Aloenxertos , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/patologia , Feminino , Humanos , Células Matadoras Naturais , Masculino , Linfócitos T/imunologia , Linfócitos T/patologia
19.
Eur J Haematol ; 95(6): 595-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26072665

RESUMO

Mast cell (MC) activation syndrome (MCAS) is a recently recognized, likely prevalent collection of heterogeneous illnesses of inappropriate MC activation with little to no MC neoplasia likely driven by heterogeneous patterns of constitutively activating mutations in MC regulatory elements including various tyrosine kinases (TKs, dominantly KIT). MCAS typically presents as chronic multisystem polymorbidity of generally inflammatory ± allergic theme. As with indolent systemic mastocytosis (SM), treatment of MCAS focuses more against MC mediators than MC neoplasia, but some cases prove refractory even to the TK inhibitor (TKI) imatinib reported useful both in uncommon SM cases not bearing SM's usual imatinib-resistant KIT-D816V mutation and in some cases of MCAS (which rarely bears KIT-D816V). Most allergy is principally a MC activation phenomenon and sunitinib is a multitargeted TKI shown helpful in controlling a murine model of oral allergy syndrome. We present the first report of use of sunitinib in life-threatening MCAS refractory to multiple agents including imatinib achieving immediate, complete, sustained, non-toxic remission suggesting a new option for treatment of aggressive MC disease.


Assuntos
Indóis/uso terapêutico , Mastocitose/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirróis/uso terapêutico , Adulto , Biópsia , Duodeno/metabolismo , Duodeno/patologia , Feminino , Humanos , Mastócitos/metabolismo , Mastócitos/patologia , Mastocitose/diagnóstico , Sunitinibe , Resultado do Tratamento
20.
Blood ; 120(17): 3455-65, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22968455

RESUMO

Epistatic interactions between killer cell immunoglobulin-like receptors (KIRs) and their cognate HLA class I ligands have important implications for reproductive success, antiviral immunity, susceptibility to autoimmune conditions and cancer, as well as for graft-versus-leukemia reactions in settings of allogeneic stem cell transplantation. Although CD8 T cells are known to acquire KIRs when maturing from naive to terminally differentiated cells, little information is available about the constitution of KIR repertoires on human CD8 T cells. Here, we have performed a high-resolution analysis of KIR expression on CD8 T cells. The results show that most CD8 T cells possess a restricted KIR expression pattern, often dominated by a single activating or inhibitory KIR. Furthermore, the expression of KIR, and its modulation of CD8 T-cell function, was independent of expression of self-HLA class I ligands. Finally, despite similarities in the stochastic regulation of KIRs by the bidirectional proximal promoter, the specificity of inhibitory KIRs on CD8 T cells was often distinct from that of natural killer cells in the same individual. The results provide new insight into the formation of KIR repertoires on human T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epistasia Genética/imunologia , Expressão Gênica/imunologia , Células Matadoras Naturais/imunologia , Receptores KIR/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular/genética , Comunicação Celular/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes Reporter , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Inata , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Luciferases , Masculino , Regiões Promotoras Genéticas/imunologia , Receptores KIR/biossíntese , Receptores KIR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA