Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Comput Aided Mol Des ; 38(1): 14, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499823

RESUMO

Computer-aided drug design has advanced rapidly in recent years, and multiple instances of in silico designed molecules advancing to the clinic have demonstrated the contribution of this field to medicine. Properly designed and implemented platforms can drastically reduce drug development timelines and costs. While such efforts were initially focused primarily on target affinity/activity, it is now appreciated that other parameters are equally important in the successful development of a drug and its progression to the clinic, including pharmacokinetic properties as well as absorption, distribution, metabolic, excretion and toxicological (ADMET) properties. In the last decade, several programs have been developed that incorporate these properties into the drug design and optimization process and to varying degrees, allowing for multi-parameter optimization. Here, we introduce the Artificial Intelligence-driven Drug Design (AIDD) platform, which automates the drug design process by integrating high-throughput physiologically-based pharmacokinetic simulations (powered by GastroPlus) and ADMET predictions (powered by ADMET Predictor) with an advanced evolutionary algorithm that is quite different than current generative models. AIDD uses these and other estimates in iteratively performing multi-objective optimizations to produce novel molecules that are active and lead-like. Here we describe the AIDD workflow and details of the methodologies involved therein. We use a dataset of triazolopyrimidine inhibitors of the dihydroorotate dehydrogenase from Plasmodium falciparum to illustrate how AIDD generates novel sets of molecules.


Assuntos
Inteligência Artificial , Desenho de Fármacos , Algoritmos , Evolução Molecular
2.
Mol Ther ; 29(3): 1057-1069, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33160457

RESUMO

Homology-directed repair (HDR) of a DNA break allows copying of genetic material from an exogenous DNA template and is frequently exploited in CRISPR-Cas9 genome editing. However, HDR is in competition with other DNA repair pathways, including non-homologous end joining (NHEJ) and microhomology-mediated end joining (MMEJ), and the efficiency of HDR outcomes is not predictable. Consequently, to optimize HDR editing, panels of CRISPR-Cas9 guide RNAs (gRNAs) and matched homology templates must be evaluated. We report here that CRISPR-Cas9 indel signatures can instead be used to identify gRNAs that maximize HDR outcomes. Specifically, we show that the frequency of deletions resulting from MMEJ repair, characterized as deletions greater than or equal to 3 bp, better predicts HDR frequency than consideration of total indel frequency. We further demonstrate that tools that predict gRNA indel signatures can be repurposed to identify gRNAs to promote HDR. Finally, by comparing indels generated by S. aureus and S. pyogenes Cas9 targeted to the same site, we add to the growing body of data that the targeted DNA sequence is a major factor governing genome editing outcomes.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , Edição de Genes , Mutação INDEL , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação , Proteína 9 Associada à CRISPR/genética , Quebras de DNA de Cadeia Dupla , Células HEK293 , Humanos , Células K562
3.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613811

RESUMO

Extrathyroidal extension (ETE) in patients with papillary thyroid carcinoma (PTC) is an indication of disease progression and can influence treatment aggressiveness. This meta-analysis assesses the diagnostic accuracy of ultrasonography (US) in detecting ETE. A systematic review and meta-analysis were performed by searching PubMed, Embase, and Cochrane for studies published up to April 2022. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated. The areas under the curve (AUC) for summary receiver operating curves were compared. A total of 11 studies analyzed ETE in 3795 patients with PTC. The sensitivity of ETE detection was 76% (95%CI = 74-78%). The specificity of ETE detection was 51% (95%CI = 49-54%). The DOR of detecting ETE by US was 5.32 (95%CI = 2.54-11.14). The AUC of ETE detection was determined to be 0.6874 ± 0.0841. We report an up-to-date analysis elucidating the diagnostic accuracy of ETE detection by US. Our work suggests the diagnostic accuracy of US in detecting ETE is adequate. Considering the importance of ETE detection on preoperative assessment, ancillary studies such as adjunct imaging studies and genetic testing should be considered.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Carcinoma Papilar/patologia , Ultrassonografia/métodos , Razão de Chances , Estudos Retrospectivos
4.
J Comput Aided Mol Des ; 34(11): 1117-1132, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32833084

RESUMO

There is a pressing need to improve the efficiency of drug development, and nowhere is that need more clear than in the case of neglected diseases like malaria. The peculiarities of pyrimidine metabolism in Plasmodium species make inhibition of dihydroorotate dehydrogenase (DHODH) an attractive target for antimalarial drug design. By applying a pair of complementary quantitative structure-activity relationships derived for inhibition of a truncated, soluble form of the enzyme from Plasmodium falciparum (s-PfDHODH) to data from a large-scale phenotypic screen against cultured parasites, we were able to identify a class of antimalarial leads that inhibit the enzyme and abolish parasite growth in blood culture. Novel analogs extending that class were designed and synthesized with a goal of improving potency as well as the general pharmacokinetic and toxicological profiles. Their synthesis also represented an opportunity to prospectively validate our in silico property predictions. The seven analogs synthesized exhibited physicochemical properties in good agreement with prediction, and five of them were more active against P. falciparum growing in blood culture than any of the compounds in the published lead series. The particular analogs prepared did not inhibit s-PfDHODH in vitro, but advanced biological assays indicated that other examples from the class did inhibit intact PfDHODH bound to the mitochondrial membrane. The new analogs, however, killed the parasites by acting through some other, unidentified mechanism 24-48 h before PfDHODH inhibition would be expected to do so.


Assuntos
Antimaláricos/química , Inibidores Enzimáticos/química , Malária Falciparum/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Quinolonas/química , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Quinolonas/efeitos adversos , Quinolonas/farmacocinética
5.
Mutagenesis ; 34(1): 3-16, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30357358

RESUMO

The International Conference on Harmonization (ICH) M7 guideline allows the use of in silico approaches for predicting Ames mutagenicity for the initial assessment of impurities in pharmaceuticals. This is the first international guideline that addresses the use of quantitative structure-activity relationship (QSAR) models in lieu of actual toxicological studies for human health assessment. Therefore, QSAR models for Ames mutagenicity now require higher predictive power for identifying mutagenic chemicals. To increase the predictive power of QSAR models, larger experimental datasets from reliable sources are required. The Division of Genetics and Mutagenesis, National Institute of Health Sciences (DGM/NIHS) of Japan recently established a unique proprietary Ames mutagenicity database containing 12140 new chemicals that have not been previously used for developing QSAR models. The DGM/NIHS provided this Ames database to QSAR vendors to validate and improve their QSAR tools. The Ames/QSAR International Challenge Project was initiated in 2014 with 12 QSAR vendors testing 17 QSAR tools against these compounds in three phases. We now present the final results. All tools were considerably improved by participation in this project. Most tools achieved >50% sensitivity (positive prediction among all Ames positives) and predictive power (accuracy) was as high as 80%, almost equivalent to the inter-laboratory reproducibility of Ames tests. To further increase the predictive power of QSAR tools, accumulation of additional Ames test data is required as well as re-evaluation of some previous Ames test results. Indeed, some Ames-positive or Ames-negative chemicals may have previously been incorrectly classified because of methodological weakness, resulting in false-positive or false-negative predictions by QSAR tools. These incorrect data hamper prediction and are a source of noise in the development of QSAR models. It is thus essential to establish a large benchmark database consisting only of well-validated Ames test results to build more accurate QSAR models.


Assuntos
Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Bases de Dados Factuais , Humanos , Japão , Testes de Mutagenicidade
6.
Mol Pharm ; 15(3): 831-839, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337562

RESUMO

When medicinal chemists need to improve oral bioavailability (%F) during lead optimization, they systematically modify compound properties mainly based on their own experience and general rules of thumb. However, at least a dozen properties can influence %F, and the difficulty of multiparameter optimization for such complex nonlinear processes grows combinatorially with the number of variables. Furthermore, strategies can be in conflict. For example, adding a polar or charged group will generally increase solubility but decrease permeability. Identifying the 2 or 3 properties that most influence %F for a given compound series would make %F optimization much more efficient. We previously reported an adaptation of physiologically based pharmacokinetic (PBPK) simulations to predict %F for lead series from purely computational inputs within a 2-fold average error. Here, we run thousands of such simulations to generate a comprehensive "bioavailability landscape" for each series. A key innovation was recognition that the large and variable number of p Ka's in drug molecules could be replaced by just the two straddling the isoelectric point. Another was use of the ZINC database to cull out chemically inaccessible regions of property space. A quadratic partial least squares regression (PLS) accurately fits a continuous surface to these thousands of bioavailability predictions. The PLS coefficients indicate the globally sensitive compound properties. The PLS surface also displays the %F landscape in these sensitive properties locally around compounds of particular interest. Finally, being quick to calculate, the PLS equation can be combined with models for activity and other properties for multiobjective lead optimization.


Assuntos
Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacocinética , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Administração Oral , Disponibilidade Biológica , Simulação por Computador , Conjuntos de Dados como Assunto , Absorção Intestinal , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Distribuição Tecidual
7.
Mol Pharm ; 15(3): 821-830, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337578

RESUMO

When medicinal chemists need to improve bioavailability (%F) within a chemical series during lead optimization, they synthesize new series members with systematically modified properties mainly by following experience and general rules of thumb. More quantitative models that predict %F of proposed compounds from chemical structure alone have proven elusive. Global empirical %F quantitative structure-property (QSPR) models perform poorly, and projects have too little data to train local %F QSPR models. Mechanistic oral absorption and physiologically based pharmacokinetic (PBPK) models simulate the dissolution, absorption, systemic distribution, and clearance of a drug in preclinical species and humans. Attempts to build global PBPK models based purely on calculated inputs have not achieved the <2-fold average error needed to guide lead optimization. In this work, local GastroPlus PBPK models are instead customized for individual medchem series. The key innovation was building a local QSPR for a numerically fitted effective intrinsic clearance (CLloc). All inputs are subsequently computed from structure alone, so the models can be applied in advance of synthesis. Training CLloc on the first 15-18 rat %F measurements gave adequate predictions, with clear improvements up to about 30 measurements, and incremental improvements beyond that.


Assuntos
Química Farmacêutica/métodos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacocinética , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Simulação por Computador , Conjuntos de Dados como Assunto , Humanos , Absorção Intestinal , Microssomos Hepáticos , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Ratos , Distribuição Tecidual
8.
Handb Exp Pharmacol ; 232: 139-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26318607

RESUMO

This chapter illustrates how cheminformatics can be applied to designing novel compounds that are active at the primary target and have good predicted ADMET properties. Examples of various cheminformatics techniques are illustrated in the process of designing inhibitors that inhibit both cyclooxygenase isoforms but are more potent toward COX-2. The first step in the process is to create a knowledge database of cyclooxygenase inhibitors in the public domain. This data was analyzed to find activity cliffs - small structural changes that result in drastic changes in potency. Additional cyclooxygenase potency and selectivity trends were obtained using matched molecular pair analysis. QSAR models were then developed to predict cyclooxygenase potency and selectivity. Next, computational algorithms were used to generate novel scaffolds starting from known cyclooxygenase inhibitors. Nine virtual libraries containing 240 compounds each were constructed. Predictions from the cyclooxygenase QSAR models were used to eliminate molecules with undesirable potency or selectivity. Additionally, the compounds were screened in silico for undesirable ADMET properties, e.g., low solubility, permeability, metabolic stability, or high toxicity, using a liability scoring system known as ADMET Risk™. Eight synthetic candidates were identified from this process after incorporating knowledge gained from activity cliff analysis. Four of the compounds were synthesized and tested to measure their COX-1 and COX-2 IC(50) values as well as several ADME properties. The best compound, SLP0020, had a COX-1 IC(50) of 770 nM and COX-2 IC(50) of 130 nM.


Assuntos
Técnicas de Química Combinatória , Descoberta de Drogas , Informática/métodos , Desenho de Fármacos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade
9.
J Chem Inf Model ; 55(2): 389-97, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25514239

RESUMO

In a unique collaboration between a software company and a pharmaceutical company, we were able to develop a new in silico pKa prediction tool with outstanding prediction quality. An existing pKa prediction method from Simulations Plus based on artificial neural network ensembles (ANNE), microstates analysis, and literature data was retrained with a large homogeneous data set of drug-like molecules from Bayer. The new model was thus built with curated sets of ∼14,000 literature pKa values (∼11,000 compounds, representing literature chemical space) and ∼19,500 pKa values experimentally determined at Bayer Pharma (∼16,000 compounds, representing industry chemical space). Model validation was performed with several test sets consisting of a total of ∼31,000 new pKa values measured at Bayer. For the largest and most difficult test set with >16,000 pKa values that were not used for training, the original model achieved a mean absolute error (MAE) of 0.72, root-mean-square error (RMSE) of 0.94, and squared correlation coefficient (R(2)) of 0.87. The new model achieves significantly improved prediction statistics, with MAE = 0.50, RMSE = 0.67, and R(2) = 0.93. It is commercially available as part of the Simulations Plus ADMET Predictor release 7.0. Good predictions are only of value when delivered effectively to those who can use them. The new pKa prediction model has been integrated into Pipeline Pilot and the PharmacophorInformatics (PIx) platform used by scientists at Bayer Pharma. Different output formats allow customized application by medicinal chemists, physical chemists, and computational chemists.


Assuntos
Simulação por Computador , Bases de Dados Factuais , Modelos Químicos , Algoritmos , Biologia Computacional , Mineração de Dados , Informática , Redes Neurais de Computação , Valor Preditivo dos Testes , Relação Estrutura-Atividade
10.
J Comput Aided Mol Des ; 29(9): 897-910, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26290258

RESUMO

Curating the data underlying quantitative structure-activity relationship models is a never-ending struggle. Some curation can now be automated but much cannot, especially where data as complex as those pertaining to molecular absorption, distribution, metabolism, excretion, and toxicity are concerned (vide infra). The authors discuss some particularly challenging problem areas in terms of specific examples involving experimental context, incompleteness of data, confusion of units, problematic nomenclature, tautomerism, and misapplication of automated structure recognition tools.


Assuntos
Curadoria de Dados , Relação Quantitativa Estrutura-Atividade , Clorpromazina/química , Clorpromazina/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Confiabilidade dos Dados , Isomerismo , Metilergonovina/química , Midazolam/análogos & derivados , Midazolam/química , Estrutura Molecular , Terminologia como Assunto , Termodinâmica , Temperatura de Transição
11.
Mol Ther Methods Clin Dev ; 32(3): 101286, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39070292

RESUMO

Although the last decade has seen tremendous progress in drugs that treat cystic fibrosis (CF) due to mutations that lead to protein misfolding, there are approximately 8%-10% of subjects with mutations that result in no significant CFTR protein expression demonstrating the need for gene editing or gene replacement with inhaled mRNA or vector-based approaches. A limitation for vector-based approaches is the formation of neutralizing humoral responses. Given that αCD20 has been used to manage post-transplant lymphoproliferative disease in CF subjects with lung transplants, we studied the ability of αCD20 to module both T and B cell responses in the lung to one of the most immunogenic vectors, E1-deleted adenovirus serotype 5. We found that αCD20 significantly blocked luminal antibody responses and efficiently permitted re-dosing. αCD20 had more limited impact on the T cell compartment, but reduced tissue resident memory T cell responses in bronchoalveolar lavage fluid. Taken together, these pre-clinical studies suggest that αCD20 could be re-purposed for lung gene therapy protocols to permit re-dosing.

12.
Gland Surg ; 13(1): 108-116, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323234

RESUMO

Percutaneous ethanol injection (PEI) is a widely used treatment option for cystic and predominantly cystic thyroid nodules. It has several advantages over other treatment modalities. Compared to surgery, PEI is less painful, can be performed in the outpatient setting, and carries less risk of transient or permanent side effects. Compared to other minimally invasive techniques such as radiofrequency ablation (RFA), PEI is less expensive and does not require specialized equipment. PEI performs well in the context of cystic nodules. PEI does not perform as well as other techniques in solid nodules, so its use as a primary treatment is limited to cystic and predominantly cystic thyroid nodules. However, PEI is also being explored as an adjunct treatment to improve ablation of solid nodules with other techniques. Here, we provide a clinical review discussing the genesis, mechanism of action, and patient selection with respect to ethanol ablation, as well as the procedure itself. Predictors of operative success, failure, and common adverse events are also summarized. Altogether, PEI allows impressive volume reduction rates with minimal complications. Several recent studies have also evaluated the long-term impact of PEI up to 10 years after treatment and revealed maintenance of robust treatment efficacy with no undesirable long-term sequelae. Thus, PEI remains the treatment of choice for benign but symptomatic cystic and predominantly cystic thyroid nodules.

13.
mBio ; 15(1): e0146423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117035

RESUMO

IMPORTANCE: Our study reveals the potential of precision-cut lung slices as an ex vivo platform to study the growth/survival of Pneumocystis spp. that can facilitate the development of new anti-fungal drugs.


Assuntos
Anti-Infecciosos , Pneumocystis , Pneumonia por Pneumocystis , Pulmão/microbiologia , Pneumonia por Pneumocystis/microbiologia
14.
J Comput Aided Mol Des ; 26(1): 29-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22160503

RESUMO

The computational chemistry and cheminformatics community faces many challenges to advancing the state of the art. We discuss three of those challenges here: accurately estimating the contribution of entropy to ligand binding; reliably estimating the uncertainties in model predictions for new molecules; and being able to effectively curate the ever-expanding literature and commercial databases needed to build new models.


Assuntos
Bases de Dados como Assunto/tendências , Informática/tendências , Modelos Moleculares , Desenho Assistido por Computador/tendências , Humanos
15.
J Pharmacol Exp Ther ; 337(1): 218-25, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21228061

RESUMO

Evidence suggests that elevations in extracellular serotonin (5-HT) in the brain can diminish stimulant effects of dopamine (DA). To assess this proposal, we evaluated the pharmacology of amphetamine analogs (m-fluoroamphetamine, p-fluoroamphetamine, m-methylamphetamine, p-methylamphetamine), which display similar in vitro potency as DA releasers (EC(50) = 24-52 nM) but differ in potency as 5-HT releasers (EC(50) = 53-1937 nM). In vivo microdialysis was used to assess the effects of drugs on extracellular DA and 5-HT in rat nucleus accumbens, while simultaneously measuring ambulation (i.e., forward locomotion) and stereotypy (i.e., repetitive movements). Rats received two intravenous injections of drug, 1 mg/kg at time 0 followed by 3 mg/kg 60 min later. All analogs produced dose-related increases in dialysate DA and 5-HT, but the effects on DA did not agree with in vitro predictions. Maximal elevation of dialysate DA ranged from 5- to 14-fold above baseline and varied inversely with 5-HT response, which ranged from 6- to 24-fold above baseline. All analogs increased ambulation and stereotypy, but drugs causing greater 5-HT release (e.g., p-methylamphetamine) were associated with significantly less forward locomotion. The magnitude of ambulation was positively correlated with extracellular DA (p < 0.001) and less so with the ratio of DA release to 5-HT release (i.e., percentage DA increase divided by percentage 5-HT increase) (p < 0.029). Collectively, our findings are consistent with the hypothesis that 5-HT release dampens stimulant effects of amphetamine-type drugs, but further studies are required to address the precise mechanisms underlying this phenomenon.


Assuntos
Anfetamina/química , Anfetamina/farmacologia , Dopamina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
16.
J Black Psychol ; 38(1): 81-103, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24683280

RESUMO

The objective of this study was to assess the relationship between stage of change (SOC) and behavioral outcomes among African American women entering obesity treatment in two settings. Fifty-five overweight/obese (body mass index = 26.50-48.13), but otherwise healthy African American women, 23 to 56 years old, attended a 13-week weight loss-treatment program that took place at churches (n = 36) or a university (n = 19). Participants were weighed, completed SOC measures, and had a physical fitness test at pre- and posttreatment. Pretreatment measures of SOC placed 47% of the participants as actors, 31% as contemplators, and 22% as maintainers. Of the 45 women who reported posttreatment SOC, 7% regressed, 44% did not change, and 31% progressed in SOC. Pretreatment SOC predicted posttreatment weight loss in the church setting but not in the university setting. At churches, contemplators lost more weight than actors and maintainers. The church may be a more conducive setting for weight change behaviors for African American women who are categorized as contemplators in the SOC model.

17.
Mol Ther Methods Clin Dev ; 23: 198-209, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703842

RESUMO

Adeno-associated virus serotype 6 (AAV6) is a valuable reagent for genome editing of hematopoietic cells due to its ability to serve as a homology donor template. However, a comprehensive study of AAV6 transduction of hematopoietic cells in culture, with the goal of maximizing ex vivo genome editing, has not been reported. Here, we evaluated how the presence of serum, culture volume, transduction time, and electroporation parameters could influence AAV6 transduction. Based on these results, we identified an optimized protocol for genome editing of human lymphocytes based on a short, highly concentrated AAV6 transduction in the absence of serum, followed by electroporation with a targeted nuclease. In human CD4+ T cells and B cells, this protocol improved editing rates up to 7-fold and 21-fold, respectively, when compared to standard AAV6 transduction protocols described in the literature. As a result, editing frequencies could be maintained using 50- to 100-fold less AAV6, which also reduced cellular toxicity. Our results highlight the important contribution of cell culture conditions for ex vivo genome editing with AAV6 vectors and provide a blueprint for improving AAV6-mediated homology-directed editing of human T and B cells.

18.
Pest Manag Sci ; 76(7): 2267-2275, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32173969

RESUMO

'Deep learning' is causing rapid technological changes in many fields of science, and conjectures about its potential for transforming everyone's work and lives is a matter of great debate. Unfortunately, it is all too easy to apply it as a 'black box' tool with little consideration of its potential limitations, especially when the data it is being applied to is less than perfect. In this Perspective, I try to put deep learning into a broader mechanistic and historical context by showing how it relates to older forms of artificial intelligence; by providing a general explanation of how it operates; and by exploring some of the challenges involved in its implementation. Examples wherein it has been applied to pest management problems are provided to illustrate how the technology works and the challenges deep learning faces. At least in the near term, its biggest impact on agrochemical development seems likely to come in automating the tedious work involved in assessing agrochemical efficacy, but getting there will require major investments in building large, well-curated data sets to work from and in providing the expertise required to assess the resulting model predictions in real-world scenarios. Deep learning may also come to complement the machine learning methodologies already available for use in pesticide discovery and development, but it seems unlikely to supplant them. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Controle de Pragas
19.
Pharmacol Ther ; 215: 107621, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32615127

RESUMO

Cannabis is a plant with a long history of human pharmacological use, both for recreational purposes and as a medicinal remedy. Many potential modern medical applications for cannabis have been proposed and are currently under investigation. However, its rich chemical content implies many possible physiological actions. As the use of medicinal cannabis has gained significant attention over the past few years, it is very important to understand phytocannabinoid dispositions within the human body, and especially their metabolic pathways. Even though the complex metabolism of phytocannabinoids poses many challenges, a more thorough understanding generates many opportunities, especially regarding possible drug-drug interactions (DDIs). Within this context, computer simulations are most commonly used for predicting substrates and inhibitors of metabolic enzymes. These predictions can assist to identify metabolic pathways by understanding individual CYP isoform specificities to a given molecule, which can help to predict potential enzyme inhibitions and DDIs. The reported in vivo Phase I and Phase II metabolisms of various phytocannabinoids are herein reviewed, accompanied by a parallel in silico analysis of their predicted metabolism, highlighting the clinical importance of such understanding in terms of DDIs and clinical outcomes.


Assuntos
Canabinoides/metabolismo , Cannabis/química , Interações Medicamentosas , Animais , Simulação por Computador , Humanos
20.
J Comput Aided Mol Des ; 23(11): 765-71, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18663585

RESUMO

It is often difficult to differentiate effectively between related G-protein coupled receptors and their subtypes when doing ligand-based drug design. GALAHAD uses a multi-objective scoring system to generate multiple alignments involving alternative trade-offs between the conflicting desires to minimize internal strain while maximizing pharmacophoric and steric (pharmacomorphic) concordance between ligands. The various overlays obtained can be associated with different subtypes by examination, even when the ligands available do not discriminate completely between receptors and when no specificity information has been used to bias the alignment process. This makes GALAHAD a potentially powerful tool for identifying discriminating models, as is illustrated here using a set of dopaminergic agonists that vary in their D1 vs. D2 receptor selectivity.


Assuntos
Dopamina/química , Dopamina/metabolismo , Desenho de Fármacos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Receptores de Dopamina D1/química , Receptores de Dopamina D2/química , Algoritmos , Biologia Computacional , Humanos , Modelos Moleculares , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA