Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(11): 4570-4580, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36893373

RESUMO

Ru and Rh nanoparticles catalyze the selective H/D exchange in phosphines using D2 as the deuterium source. The position of the deuterium incorporation is determined by the structure of the P-based substrates, while activity depends on the nature of the metal, the properties of the stabilizing agents, and the type of the substituent on phosphorus. The appropriate catalyst can thus be selected either for the exclusive H/D exchange in aromatic rings or also for alkyl substituents. The selectivity observed in each case provides relevant information on the coordination mode of the ligand. Density functional theory calculations provide insights into the H/D exchange mechanism and reveal a strong influence of the phosphine structure on the selectivity. The isotope exchange proceeds via C-H bond activation at nanoparticle edges. Phosphines with strong coordination through the phosphorus atom such as PPh3 or PPh2Me show preferred deuteration at ortho positions of aromatic rings and at the methyl substituents. This selectivity is observed because the corresponding C-H moieties can interact with the nanoparticle surface while the phosphine is P-coordinated, and the C-H activation results in stable metallacyclic intermediates. For weakly coordinating phosphines such as P(o-tolyl)3, the interaction with the nanoparticle can occur directly through phosphine substituents, and then, other deuteration patterns are observed.

2.
Chemistry ; 25(35): 8321-8331, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31013371

RESUMO

A facile and straightforward methodology for the preparation of monometallic (copper and palladium) and bimetallic nanocatalysts (NiCu and PdCu) stabilized by a N-heterocyclic carbene ligand is reported. Both colloidal and supported nanoparticles (NPs) on carbon nanotubes (CNTs) were prepared in a one-pot synthesis with outstanding control on their size, morphology and composition. These catalysts were evaluated in the selective hydrogenation of alkynes and alkynols. PdCu/CNTs revealed an efficient catalytic system providing high selectivity in the hydrogenation of terminal and internal alkynes. Moreover, this catalyst was tested in the semi-hydrogenation of acetylene in industrially relevant acetylene/ethylene-rich model gas feeds and showed excellent stability even after 40 h of reaction.

3.
Chemistry ; 20(35): 10982-9, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25048816

RESUMO

The mechanism of the experimentally reported phosphine-free palladium-catalysed carbonylation of aryl iodides with amines in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as base was investigated at the DFT level. Paths were identified for both di- and monocarbonylation, and the calculated selectivity for three different substrates was in agreement with experiment. In dicarbonylation yielding α-ketoamides, formation of the second carbon-carbon bond occurs through reductive elimination in the Pd acyl amide intermediate after DBU-assisted nucleophilic attack of an amine at a terminal CO ligand. This path yields the major product with iodobenzene and the almost exclusive product with p-methoxyiodobenzene. Two different possible pathways yield the monocarbonylated amide product. In one of them, which affords the minor product for iodobenzene, base-assisted nucleophilic attack of the amine takes place on a Pd-bound acyl ligand. For substrates with electron-withdrawing substituents, such as p-cyanoiodobenzene, aryl migration to the CO ligand is disfavoured, and this allows base-assisted amine attack at a terminal CO ligand early in the catalytic cycle. From the resulting Pd amide aryl complex, the subsequent reductive elimination occurs easily, and monocarbonylation becomes favoured.

4.
Top Curr Chem ; 342: 79-115, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23595364

RESUMO

Rhodium is currently the metal of choice to achieve high enantioselectivities in the hydroformylation of a relatively wide variety of alkene substrates. The elucidation of the different steps of the catalytic cycle and the characterization of the resting state, together with the discovery of several types of ligands that are able to provide high enantioselectivities, have made the rhodium-catalyzed hydroformylation a synthetically useful tool. For years, ligands containing phosphite moieties such as diphosphites and phosphine-phosphites were considered the most successful ligands to achieve high enantioselectivities for classical substrates such as styrene and vinyl acetate. In fact, the phosphite-phosphine BINAPHOS (43) and its derivatives are still today the most successful ligands in terms of selectivity and scope. For more substituted substrates, general trends can be extracted. However, recent studies showed that these general trends can be sometimes reversed by the use of the appropriate catalyst and choice of reaction conditions, clearly showing that these trends are only indicative and that there are still many challenges to be tackled in this area.

5.
Chemistry ; 18(23): 7128-40, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22511565

RESUMO

The reactivity of [Rh(CO)(2){(R,R)-Ph-BPE}]BF(4) (2) toward amine, CO and/or H(2) was examined by high-pressure NMR and IR spectroscopy. The two cationic pentacoordinated species [Rh(CO)(3) {(R,R)-Ph-BPE}]BF(4) (4) and [Rh(CO)(2)(NHC(5)H(10)){(R,R)-Ph-BPE}]BF(4) (8) were identified. The transformation of 2 into the neutral complex [RhH(CO)(2){(R,R)-Ph-BPE}] (3) under hydroaminomethylation conditions (CO/H(2), amine) was investigated. The full mechanisms related to the formation of 3, 4 and 8 starting from 2 are supported by DFT calculations. In particular, the pathway from 2 to 3 revealed the deprotonation by the amine of the dihydride species [Rh(H)(2)(CO)(2){(R,R)-Ph-BPE}]BF(4) (6), resulting from the oxidative addition of H(2) on 2.

6.
Chem Soc Rev ; 40(10): 4973-85, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21879073

RESUMO

The catalytic formation of C-C bonds is one of the most useful transformations in organic synthesis. Over the last decade, the use of transition metal nanoparticles (NPs) in catalysis has attracted much interest and their use in C-C bond formation reactions constitutes one of their most important applications, including the Suzuki, Heck, and Sonogashira reactions. This tutorial review highlights recent work in this active area, considering the stabilising agents used to prepare the NPs, the catalytic results and the recycling possibilities.

7.
Pharmaceutics ; 14(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559294

RESUMO

A family of dinuclear iron (II) compounds with iminopyridine-based ligands displays selective cytotoxic activity against cancer cell lines. All compounds have IC50 values 2-6 fold lower than that of cisplatin, and 30-90 fold lower than that of carboplatin for the tumor cell lines assayed. Comparing the IC50 values between tumor and non-tumor cell lines, the selectivity indexes range from 3.2 to 34, compound 10, [Fe2(4)2(CH3CN)4](BF4)4, showing the highest selectivity. Those compounds carrying substituents on the iminopyridine ring show the same cytotoxicity as those without substituents. However, the electronic effects of the substituents on position 6 may be important for the cytotoxicity of the complexes, and consequently for their selectivity. All compounds act over DNA, promoting cuts on both strands in the presence of reactive oxygen species. Since compound 10 presented the highest selectivity, its cytotoxic effect was further characterized. It induces apoptosis, affects cell cycle phase distribution in a cell-dependent manner, and its cytotoxic effect is linked to reactive oxygen species generation. In addition, it decreases tumor cell migration, showing potential antimetastatic effects. These properties make compound 10 a good lead antitumor agent among all compounds studied here.

8.
Chemistry ; 16(23): 6919-32, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20440722

RESUMO

Novel cis-1,2-bis(di-tert-butyl-phosphinomethyl) carbocyclic ligands 6-9 have been prepared and the corresponding palladium complexes [Pd(O(3)SCH(3))(L-L)][O(3)SCH(3)] (L-L=diphosphine) 32-35 synthesised and characterised by NMR spectroscopy and X-ray diffraction. These diphosphine ligands give very active catalysts for the palladium-catalysed methoxycarbonylation of ethene. The activity varies with the size of the carbocyclic backbone, ligands 7 and 9, containing four- and six-membered ring backbones giving more active systems. The acid used as co-catalyst has a strong influence on the activity, with excess trifluoroacetic acid affording the highest conversion, whereas excess methyl sulfonic acid inhibits the catalytic system. An in operando NMR spectroscopic mechanistic study has established the catalytic cycle and resting state of the catalyst under operating reaction conditions. Although the catalysis follows the hydride pathway, the resting state is shown to be the hydride precursor complex [Pd(O(3)SCH(3))(L-L)][O(3)SCH(3)], which demonstrates that an isolable/detectable hydride complex is not a prerequisite for this mechanism.

9.
Molecules ; 15(5): 3428-40, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20657492

RESUMO

The enantioselective hydrogenation of 1-phenyl-1,2-propanedione over Pt colloids stabilized with (R,S)-4,5-dihydro-4,5-diphenyl-2-(6-cyanopyridinyl)imidazoline (CI) supported on a meso-structured ZrO(2) under a pressure of 40 bar of H(2) at 298 K has been investigated(.) The metal loading in all catalysts was 1 wt%. The effect of the amount of chiral modifier on the metal particle size and on the catalytic behavior was analyzed. It was found that as the CI/Pt molar ratio increases from 2.5 to 3.5 the Pt crystal size decreases from 3.0 to 1.8 nm. All catalysts were very active in the studied reaction, with the most active one being the catalyst with smaller Pt particles, whereas the selectivity is higher in those catalysts with larger chiral modified Pt metal particles.


Assuntos
Chalconas/química , Platina/química , Catálise , Coloides/química , Hidrogenação , Tamanho da Partícula , Estereoisomerismo , Zircônio
10.
Sci Rep ; 9(1): 18776, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827146

RESUMO

In the present work, hollow PdAg-CeO2 heterodimer nanocrystals (NCs) were prepared and tested as catalysts for the selective hydrogenation of alkynes. These nanostructures combine for the first time the beneficial effect of alloying Pd with Ag in a single NC hollow domain with the formation of active sites at the interface with the CeO2 counterpart in an additive manner. The PdAg-CeO2 NCs display excellent alkene selectivity for aliphatic alkynes. For the specific case of hydrogenation of internal alkynes such as 4-octyne, very low over-hydrogenation and isomerization products were observed over a full conversion regime, even after prolonged reaction times. These catalytic properties were remarkably superior in comparison to standard catalysts. The promotion of Ag on the moderation of the reactivity of the Pd phase, in combination with the creation of interfacial sites with the CeO2 moiety in the same nanostructure, is pointed as the responsible of such a remarkable catalytic performance.

11.
Chem Commun (Camb) ; (46): 6197-9, 2008 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19082118

RESUMO

The use of efficient Pd systems bearing C(2)-symmetric chiral diphosphite ligands derived from carbohydrates in asymmetric allylic substitution reactions is described here, reaching TOFs > 22 000 h(-1) in allylic alkylation and ca. 400 h(-1) in allylic amination, giving excellent enantioselectivities (ee > 99%) and kinetic resolution of the racemic substrate.

12.
Chem Commun (Camb) ; (24): 2759-61, 2008 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-18688301

RESUMO

Ruthenium nanoparticles (RuNPs) were prepared through the hydrogenation of [Ru(COD)(COT)] (COD = 1,5-cyclooctadiene, COT = 1,3,5-cyclooctatriene) in the presence of diphosphites derived from carbohydrates as stabilizing agents, and interestingly, structural modifications of the diphosphite backbone were found to influence nanoparticle size and dispersity, as well as their catalytic activity in arene hydrogenation.

14.
Org Lett ; 9(1): 49-52, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17192082

RESUMO

[reaction: see text] A series of phosphite-phosphoroamidite ligands, derived from readily available d-xylose, has been successfully applied for the first time in the Pd-catalyzed allylic substitution of several substrates with different steric and electronic properties, with high enantioselectivities (ee's up to 98) and activities in standard conditions.

15.
Dalton Trans ; 46(37): 12381-12403, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28657624

RESUMO

In the last decade, the semi-hydrogenation of alkynes has experienced significant advances in terms of fine control of alkene selectivity and prevention of the over-hydrogenation reaction. Such advances have been possible to a large extent through the progress in colloidal methods for the preparation of metallic nanoparticles. The present review describes the contributions in the field of the selective hydrogenation of alkynes involving the utilization of colloidal methodologies. These approaches permit the fine modulation of several parameters affecting the catalytic performance of the active phase such as the particle size, the bulk and the surface structure and composition. For the transformation of liquid substrates, the nature of the stabilizers, the reducing agents and the metal precursors employed for the synthesis of the catalysts can be tuned to enhance the alkene selectivity. In contrast, in catalytic transformations of gaseous substrates, the presence of adsorbed species at the metal surface usually gives detrimental results while the interplay between the support and the active phase appears to be a more convincing alternative for catalyst tuning.

16.
Nanomaterials (Basel) ; 7(3)2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28336892

RESUMO

A series of small and well defined cobalt nanoparticles were synthesized by the chemical reduction of cobalt salts in water using NaBH4 as a reducing agent and using various polymeric stabilizers. The obtained nanocatalysts of similar mean diameters (ca. 2.6 nm) were fully characterized and tested in the aqueous phase Fischer-Tropsch Synthesis (AFTS). Interestingly, the nature and structure of the stabilizers used during the synthesis of the CoNPs affected the reduction degree of cobalt and the B-doping of these NPs and consequently, influenced the performance of these nanocatalysts in AFTS.

17.
Chem Commun (Camb) ; 53(56): 7894-7897, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28480906

RESUMO

Well defined Ni nanoparticles (NiNPs) stabilized with N-heterocyclic carbenes (NHCs) have been synthesized through a new methodology involving the decarboxylation of a zwitterionic CO2 adduct. Their catalytic performance was tested in the partial hydrogenation of alkynes into (Z)-alkenes under very mild reaction conditions (50 °C and 5 bar H2 pressure), providing excellent activities and selectivities.

18.
Chem Commun (Camb) ; (2): 191-3, 2006 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-16372102

RESUMO

3-Hydroxy-2-methylpropionamide, an important intermediate in the synthesis of methyl methacrylate, has been obtained with excellent conversion and high selectivity from acrylamide by a tandem hydroformylation-hydrogenation sequence catalysed by Rh/PPh3 and Raney Ni, respectively.


Assuntos
Acrilamida/química , Acrilamidas/síntese química , Acrilamidas/química , Catálise , Hidrogenação , Ligantes , Estrutura Molecular , Níquel/química , Compostos Organometálicos/química , Ródio/química , Temperatura
19.
Dalton Trans ; 45(8): 3564-76, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26804332

RESUMO

A series of imino- and amino-pyridine ligands based on dihydrobenzofurobenzofuran (BFBF) and methanodibenzodioxocine (DBDOC) backbones have been synthesized. These ligands form exclusively dinuclear complexes with metals such as iron(II) and copper(II). The structures for complexes 15, 16, 18, 19, 20, 21, 23, and 24 were determined by X-ray crystallography. The complexes show large distances for the metal nuclei and different geometries depending on the nature of the metal. An octahedral geometry was observed for the iron(II) complexes, while copper(II) complex 24 showed a distorted trigonal bipyramidal geometry. The iron(II) complexes showed activity as catalysts in the cycloaddition of CO2 to epoxides, obtaining moderate yields of cyclic carbonates.

20.
Org Lett ; 7(25): 5597-9, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16321000

RESUMO

[chemical reaction: see text]. A series of phosphite-oxazoline ligands, derived from readily available D-glucosamine, have been used for the first time in the palladium-catalyzed Heck reaction of several substrates with high regio- and enantioselectivities (ee's up to 99%) and improved activities in standard conditions.


Assuntos
Oxazóis/química , Fosfitos/química , Catálise , Ligantes , Estrutura Molecular , Oxazóis/classificação , Paládio/química , Fosfitos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA