Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nature ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231480

RESUMO

Hyperlipidaemia is a major risk factor of atherosclerotic cardiovascular disease (ASCVD). Risk of cardiovascular events depends on cumulative lifetime exposure to low-density lipoprotein cholesterol (LDL-C) and, independently, on the time course of exposure to LDL-C, with early exposure being associated with a higher risk1. Furthermore, LDL-C fluctuations are associated with ASCVD outcomes2-4. However, the precise mechanisms behind this increased ASCVD risk are not understood. Here we find that early intermittent feeding of mice on a high-cholesterol Western-type diet (WD) accelerates atherosclerosis compared with late continuous exposure to the WD, despite similar cumulative circulating LDL-C levels. We find that early intermittent hyperlipidaemia alters the number and homeostatic phenotype of resident-like arterial macrophages. Macrophage genes with altered expression are enriched for genes linked to human ASCVD in genome-wide association studies. We show that LYVE1+ resident macrophages are atheroprotective, and identify biological pathways related to actin filament organization, of which alteration accelerates atherosclerosis. Using the Young Finns Study, we show that exposure to cholesterol early in life is significantly associated with the incidence and size of carotid atherosclerotic plaques in mid-adulthood. In summary, our results identify early intermittent exposure to cholesterol as a strong determinant of accelerated atherosclerosis, highlighting the importance of optimal control of hyperlipidaemia early in life, and providing insights into the underlying biological mechanisms. This knowledge will be essential to designing effective therapeutic strategies to combat ASCVD.

2.
Immunity ; 52(5): 782-793.e5, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32272082

RESUMO

Splenic red pulp macrophages (RPMs) contribute to erythrocyte homeostasis and are required for iron recycling. Heme induces the expression of SPIC transcription factor in monocyte-derived macrophages and promotes their differentiation into RPM precursors, pre-RPMs. However, the requirements for differentiation into mature RPMs remain unknown. Here, we have demonstrated that interleukin (IL)-33 associated with erythrocytes and co-cooperated with heme to promote the generation of mature RPMs through activation of the MyD88 adaptor protein and ERK1/2 kinases downstream of the IL-33 receptor, IL1RL1. IL-33- and IL1RL1-deficient mice showed defective iron recycling and increased splenic iron deposition. Gene expression and chromatin accessibility studies revealed a role for GATA transcription factors downstream of IL-33 signaling during the development of pre-RPMs that retained full potential to differentiate into RPMs. Thus, IL-33 instructs the development of RPMs as a response to physiological erythrocyte damage with important implications to iron recycling and iron homeostasis.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Ferro/metabolismo , Macrófagos/imunologia , Transdução de Sinais/imunologia , Baço/metabolismo , Animais , Eritrócitos/imunologia , Eritrócitos/metabolismo , Heme/imunologia , Heme/metabolismo , Homeostase/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Baço/citologia
3.
Nature ; 594(7864): 560-565, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040253

RESUMO

Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Microtúbulos/química , Infarto do Miocárdio/fisiopatologia , Proteínas Serina-Treonina Quinases/fisiologia , Tirosina/química , Proteínas Angiogênicas , Animais , Carboxipeptidases , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Miócitos Cardíacos , Volume Sistólico , Função Ventricular Esquerda
4.
Nature ; 597(7874): 92-96, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433968

RESUMO

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Proteoglicanas de Heparan Sulfato/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/deficiência
5.
J Am Soc Nephrol ; 34(7): 1207-1221, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022108

RESUMO

SIGNIFICANCE STATEMENT: Kidney-derived thrombopoietin (TPO) increases myeloid cell and platelet production during antibody-mediated chronic kidney disease (AMCKD) in a mouse model, exacerbating chronic thromobinflammation in microvessels. The effect is mirrored in patients with extracapillary glomerulonephritis associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases.Neutralization of TPO in mice normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. The findings suggest that TPO is a relevant biomarker and a promising therapeutic target for patients with CKD and other chronic thromboinflammatory diseases. BACKGROUND: Chronic thromboinflammation provokes microvascular alterations and rarefaction, promoting organ dysfunction in individuals with various life-threatening diseases. Hematopoietic growth factors (HGFs) released by the affected organ may sustain emergency hematopoiesis and fuel the thromboinflammatory process. METHODS: Using a murine model of antibody-mediated chronic kidney disease (AMCKD) and pharmacological interventions, we comprehensively monitored the response to injury in the circulating blood, urine, bone marrow, and kidney. RESULTS: Experimental AMCKD was associated with chronic thromboinflammation and the production of HGFs, especially thrombopoietin (TPO), by the injured kidney, which stimulated and skewed hematopoiesis toward myelo-megakaryopoiesis. AMCKD was characterized by vascular and kidney dysfunction, TGF ß -dependent glomerulosclerosis, and microvascular rarefaction. In humans, extracapillary glomerulonephritis is associated with thromboinflammation, TGF ß -dependent glomerulosclerosis, and increased bioavailability of TPO. Analysis of albumin, HGF, and inflammatory cytokine levels in sera from patients with extracapillary glomerulonephritis allowed us to identify treatment responders. Strikingly, TPO neutralization in the experimental AMCKD model normalized hematopoiesis, reduced chronic thromboinflammation, and ameliorated renal disease. CONCLUSION: TPO-skewed hematopoiesis exacerbates chronic thromboinflammation in microvessels and worsens AMCKD. TPO is both a relevant biomarker and a promising therapeutic target in humans with CKD and other chronic thromboinflammatory diseases.


Assuntos
Glomerulonefrite , Insuficiência Renal Crônica , Trombose , Humanos , Camundongos , Animais , Trombopoetina/metabolismo , Trombopoetina/farmacologia , Receptores de Trombopoetina , Inflamação , Tromboinflamação , Hematopoese/fisiologia , Anticorpos/farmacologia , Rim/metabolismo , Insuficiência Renal Crônica/etiologia , Fator de Crescimento Transformador beta/farmacologia
6.
J Neurochem ; 157(3): 561-573, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33382098

RESUMO

Hepatic encephalopathy (HE) is a debilitating neurological complication of cirrhosis. By definition, HE is considered a reversible disorder, and therefore HE should resolve following liver transplantation (LT). However, persisting neurological complications are observed in as many as 47% of LT recipients. LT is an invasive surgical procedure accompanied by various perioperative factors such as blood loss and hypotension which could influence outcomes post-LT. We hypothesize that minimal HE (MHE) renders the brain frail and susceptible to hypotension-induced neuronal cell death. Six-week bile duct-ligated (BDL) rats with MHE and respective SHAM-controls were used. Several degrees of hypotension (mean arterial pressure of 30, 60 and 90 mm Hg) were induced via blood withdrawal from the femoral artery and maintained for 120 min. Brains were collected for neuronal cell count and apoptotic analysis. In a separate group, BDL rats were treated for MHE with the ammonia-lowering strategy ornithine phenylacetate (OP; MNK-6105), administered orally (1 g/kg) for 3 weeks before induction of hypotension. Hypotension 30 and 60 mm Hg (not 90 mm Hg) significantly decreased neuronal marker expression (NeuN) and cresyl violet staining in the frontal cortex compared to respective hypotensive SHAM-operated controls as well as non-hypotensive BDL rats. Neuronal degeneration was associated with an increase in cleaved caspase-3, suggesting the mechanism of cell death was apoptotic. OP treatment attenuated hyperammonaemia, improved anxiety and activity, and protected the brain against hypotension-induced neuronal cell death. Our findings demonstrate that rats with chronic liver disease and MHE are more susceptible to hypotension-induced neuronal cell degeneration. This highlights MHE at the time of LT is a risk factor for poor neurological outcome post-transplant and that treating for MHE pre-LT might reduce this risk.


Assuntos
Amônia/metabolismo , Ductos Biliares , Hipotensão/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Amônia/sangue , Animais , Antígenos Nucleares/metabolismo , Ansiedade/psicologia , Apoptose , Comportamento Animal , Caspase 3/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Encefalopatia Hepática/patologia , Hiperamonemia , Ligadura , Masculino , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/psicologia , Ornitina/análogos & derivados , Ornitina/uso terapêutico , Ratos , Ratos Sprague-Dawley
7.
Circ Res ; 125(11): 1019-1034, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31610723

RESUMO

RATIONALE: Atherosclerosis is a chronic inflammatory disease. Recent studies have shown that dysfunctional autophagy in endothelial cells, smooth muscle cells, and macrophages, plays a detrimental role during atherogenesis, leading to the suggestion that autophagy-stimulating approaches may provide benefit. OBJECTIVE: Dendritic cells (DCs) are at the crossroad of innate and adaptive immune responses and profoundly modulate the development of atherosclerosis. Intriguingly, the role of autophagy in DC function during atherosclerosis and how the autophagy process would impact disease development has not been addressed. METHODS AND RESULTS: Here, we show that the autophagic flux in atherosclerosis-susceptible Ldlr-/- (low-density lipoprotein receptor-deficient) mice is substantially higher in splenic and aortic DCs compared with macrophages and is further activated under hypercholesterolemic conditions. RNA sequencing and functional studies on selective cell populations reveal that disruption of autophagy through deletion of Atg16l1 differentially affects the biology and functions of DC subsets in Ldlr-/- mice under high-fat diet. Atg16l1 deficient CD11b+ DCs develop a TGF (transforming growth factor)-ß-dependent tolerogenic phenotype and promote the expansion of regulatory T cells, whereas no such effects are seen with Atg16l1 deficient CD8α+ DCs. Atg16l1 deletion in DCs (all CD11c-expressing cells) expands aortic regulatory T cells in vivo, limits the accumulation of T helper cells type 1, and reduces the development of atherosclerosis in Ldlr-/- mice. In contrast, no such effects are seen when Atg16l1 is deleted selectively in conventional CD8α+ DCs and CD103+ DCs. Total T-cell or selective regulatory T-cell depletion abrogates the atheroprotective effect of Atg16l1 deficient DCs. CONCLUSIONS: In contrast to its proatherogenic role in macrophages, autophagy disruption in DCs induces a counter-regulatory response that maintains immune homeostasis in Ldlr-/- mice under high-fat diet and limits atherogenesis. Selective modulation of autophagy in DCs could constitute an interesting therapeutic target in atherosclerosis.


Assuntos
Aorta/imunologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Autofagia , Antígeno CD11b/imunologia , Comunicação Celular , Proliferação de Células , Células Dendríticas/imunologia , Ativação Linfocitária , Linfócitos T Reguladores/imunologia , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transplante de Medula Óssea , Antígenos CD11/genética , Antígenos CD11/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo
8.
Circ Res ; 122(6): 813-820, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29436389

RESUMO

RATIONALE: Despite an established role for adaptive immune responses in atherosclerosis, the contribution of dendritic cells (DCs) and their various subsets is still poorly understood. OBJECTIVE: Here, we address the role of IRF8 (interferon regulatory factor 8)-dependent DCs (lymphoid CD8α+ and their developmentally related nonlymphoid CD103+ DCs) in the induction of proatherogenic immune responses during high fat feeding. METHODS AND RESULTS: Using a fate-mapping technique to track DCs originating from a DNGR1+ (dendritic cell natural killer lectin group receptor 1) precursor (Clec9a+/creRosa+/EYFP mice), we first show that YFPhiCD11chiMHCIIhi (major histocompatibility complex class II) DCs are present in the atherosclerotic aorta of low-density lipoprotein receptor-deficient (Ldlr-/-) mice and are CD11b-CD103+IRF8hi. Restricted deletion of IRF8 in DCs (Irf8flox/floxCd11cCre ) reduces the accumulation of CD11chiMHCIIhi DCs in the aorta without affecting CD11b+CD103- DCs or macrophages but completely abolishes the accumulation of aortic CD11b-CD103+ DCs. Lymphoid CD8α+ DCs are also deleted. This is associated with a significant reduction of aortic T-cell accumulation and a marked reduction of high-fat diet-induced systemic T-cell priming, activation, and differentiation toward T helper type 1 cells, T follicular helper cells, and regulatory T cells. As a consequence, B-cell activation and germinal center responses to high-fat diet are also markedly reduced. IRF8 deletion in DCs significantly reduces the development of atherosclerosis, predominantly in the aortic sinus, despite a modest increase in total plasma cholesterol levels. CONCLUSIONS: IRF8 expression in DCs plays a nonredundant role in the development of proatherogenic adaptive immunity.


Assuntos
Imunidade Adaptativa , Aterosclerose/imunologia , Células Dendríticas/imunologia , Fatores Reguladores de Interferon/metabolismo , Animais , Aorta/citologia , Aterosclerose/etiologia , Antígenos CD11/genética , Antígenos CD11/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Fatores Reguladores de Interferon/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
9.
Arterioscler Thromb Vasc Biol ; 39(8): 1645-1651, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167564

RESUMO

OBJECTIVE: MARK4 (microtubule affinity-regulating kinase 4) regulates NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome activation. The aim of the study is to examine the role of MARK4 in hematopoietic cells during atherosclerosis. METHODS AND RESULTS: We show increased MARK4 expression in human atherosclerotic lesions compared with adjacent areas. MARK4 is coexpressed with NLRP3, and they colocalize in areas enriched in CD68-positive but α-SMA (α-smooth muscle actin)-negative cells. Expression of MARK4 and NLRP3 in the atherosclerotic lesions is associated with the production of active IL (interleukin)-1ß and IL-18. To directly assess the role of hematopoietic MARK4 in NLRP3 inflammasome activation and atherosclerotic plaque formation, Ldlr (low-density lipoprotein receptor)-deficient mice were lethally irradiated and reconstituted with either wild-type or Mark4-deficient bone marrow cells, and were subsequently fed a high-fat diet and cholesterol diet for 9 weeks. Mark4 deficiency in bone marrow cells led to a significant reduction of lesion size, together with decreased circulating levels of IL-18 and IFN-γ (interferon-γ). Furthermore, Mark4 deficiency in primary murine bone marrow-derived macrophages prevented cholesterol crystal-induced NLRP3 inflammasome activation, as revealed by reduced caspase-1 activity together with reduced production of IL-1ß and IL-18. CONCLUSIONS: MARK4-dependent NLRP3 inflammasome activation in the hematopoietic cells regulates the development of atherosclerosis.


Assuntos
Aterosclerose/etiologia , Inflamassomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Humanos , Interleucina-18/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores de LDL/fisiologia
10.
Arterioscler Thromb Vasc Biol ; 39(6): 1149-1159, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30943775

RESUMO

Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.


Assuntos
Aneurisma Aórtico/patologia , Dissecção Aórtica/patologia , Autofagia , Plasticidade Celular , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Adulto , Idoso , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/metabolismo , Angiotensina II , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem da Célula , Células Cultivadas , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA