Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39188028

RESUMO

Despite the clinical and molecular heterogeneity of follicular lymphoma (FL), there remains a lack of biomarker-directed therapeutic approaches in routine clinical practice, with the notable exception of the EZH2 inhibitor tazemetostat in EZH2-mutant FL. Here we examined whether gene mutation status predicts response to clinical mTOR inhibitors (mTORi) in FL, by performing targeted mutational profiling of biopsies from 21 relapsed/refractory FL patients treated with mTORi everolimus or temsirolimus within clinical trials. We observed an enrichment of mutations within the catalytic histone acetyltransferase (HAT) domain of CREBBP in mTORi-responders, and describe distinct transcriptional characteristics and co-occurring mutations of FL harbouring these mutations; reinforcing the growing appreciation of CREBBPHAT mutation as a key biological determinant and its promise as a therapeutic biomarker in FL.

2.
Blood ; 138(5): 370-381, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786580

RESUMO

Loss-of-function mutations in KMT2D are a striking feature of germinal center (GC) lymphomas, resulting in decreased histone 3 lysine 4 (H3K4) methylation and altered gene expression. We hypothesized that inhibition of the KDM5 family, which demethylates H3K4me3/me2, would reestablish H3K4 methylation and restore the expression of genes repressed on loss of KMT2D. KDM5 inhibition increased H3K4me3 levels and caused an antiproliferative response in vitro, which was markedly greater in both endogenous and gene-edited KMT2D mutant diffuse large B-cell lymphoma cell lines, whereas tumor growth was inhibited in KMT2D mutant xenografts in vivo. KDM5 inhibition reactivated both KMT2D-dependent and -independent genes, resulting in diminished B-cell signaling and altered expression of B-cell lymphoma 2 (BCL2) family members, including BCL2 itself. KDM5 inhibition may offer an effective therapeutic strategy for ameliorating KMT2D loss-of-function mutations in GC lymphomas.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Mutação com Perda de Função , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Proteínas de Neoplasias/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA