Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(33): e2207829119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943988

RESUMO

Although patients generally prefer oral drug delivery to injections, low permeability of the gastrointestinal tract makes this method impossible for most biomacromolecules. One potential solution is codelivery of macromolecules, including therapeutic proteins or nucleic acids, with intestinal permeation enhancers; however, enhancer use has been limited clinically by modest efficacy and toxicity concerns surrounding long-term administration. Here, we hypothesized that plant-based foods, which are well tolerated by the gastrointestinal tract, may contain compounds that enable oral macromolecular absorption without causing adverse effects. Upon testing more than 100 fruits, vegetables, and herbs, we identified strawberry and its red pigment, pelargonidin, as potent, well-tolerated enhancers of intestinal permeability. In mice, an oral capsule formulation comprising pelargonidin and a 1 U/kg dose of insulin reduced blood glucose levels for over 4 h, with bioactivity exceeding 100% relative to subcutaneous injection. Effects were reversible within 2 h and associated with actin and tight junction rearrangement. Furthermore, daily dosing of mice with pelargonidin for 1 mo resulted in no detectable side effects, including weight loss, tissue damage, or inflammatory responses. These data suggest that pelargonidin is an exceptionally effective enhancer of oral protein uptake that may be safe for routine pharmaceutical use.


Assuntos
Antocianinas , Fragaria , Absorção Intestinal , Intestinos , Proteínas , Administração Oral , Animais , Antocianinas/química , Antocianinas/farmacologia , Fragaria/química , Insulina/administração & dosagem , Insulina/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Camundongos , Permeabilidade , Proteínas/administração & dosagem , Proteínas/farmacocinética
2.
Mol Ther Methods Clin Dev ; 32(1): 101195, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38327805

RESUMO

Patients with pre-existing immunity to adeno-associated virus (AAV) are currently unable to receive systemic gene transfer therapies. In this nonhuman primate study, we investigated the impact of immunosuppression strategies on gene transfer therapy safety and efficacy and analyzed plasmapheresis as a potential pretreatment for circumvention of pre-existing immunity or redosing. In part 1, animals received delandistrogene moxeparvovec (SRP-9001), an AAVrh74-based gene transfer therapy for Duchenne muscular dystrophy. Cohort 1 (control, n = 2) received no immunosuppression; cohorts 2-4 (n = 3 per cohort) received prednisone at different time points; and cohort 5 (n = 3) received rituximab, sirolimus, and prednisone before and after dosing. In part 2, cohorts 2-4 underwent plasmapheresis before redosing; cohort 5 was redosed without plasmapheresis. We analyzed safety, immune response (humoral and cell-mediated responses and complement activation), and vector genome distribution. After 2 or 3 plasmapheresis exchanges, circulating anti-AAVrh74 antibodies were reduced, and animals were redosed. Plasmapheresis was well tolerated, with no abnormal clinical or immunological observations. Cohort 5 (redosed with high anti-AAVrh74 antibody titers) had hypersensitivity reactions, which were controlled with treatment. These findings suggest that plasmapheresis is a safe and effective method to reduce anti-AAV antibody levels in nonhuman primates prior to gene transfer therapy. The results may inform human studies involving redosing or circumvention of pre-existing immunity.

3.
Bioeng Transl Med ; 8(1): e10342, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684095

RESUMO

Although protein drugs are powerful biologic therapeutics, they cannot be delivered orally because their large size and hydrophilicity limit their absorption across the intestinal epithelium. One potential solution is the incorporation of permeation enhancers into oral protein formulations; however, few have advanced clinically due to toxicity concerns surrounding chronic use. To better understand these concerns, we conducted a 30-day longitudinal study of daily oral permeation enhancer use in mice and resultant effects on intestinal health. Specifically, we investigated three permeation enhancers: sodium caprate (C10), an industry standard, as well as 1-phenylpiperazine (PPZ) and sodium deoxycholate (SDC). Over 30 days of treatment, all mice gained weight, and none required removal from the study due to poor health. Furthermore, intestinal permeability did not increase following chronic use. We also quantified the gene expression of four tight junction proteins (claudin 2, claudin 3, ZO-1, and JAM-A). Significant differences in gene expression between untreated and permeation enhancer-treated mice were found, but these varied between treatment groups, with most differences resolving after a 1-week washout period. Immunofluorescence microscopy revealed no observable differences in protein localization or villus architecture between treated and untreated mice. Overall, PPZ and SDC performed comparably to C10, one of the most clinically advanced enhancers, and results suggest that the chronic use of some permeation enhancers may be therapeutically viable from a safety standpoint.

4.
Methods Mol Biol ; 2399: 9-19, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35604551

RESUMO

Circular RNAs (circRNAs) are a vast class of covalently closed, noncoding RNAs expressed in specific tissues and developmental stages. The molecular, cellular, and pathophysiologic roles of circRNAs are not fully known, but their impact on gene expression programs is beginning to emerge, as circRNAs often associate with RNA-binding proteins and nucleic acids. With rising interest in identifying circRNAs associated with disease processes, it has become particularly important to identify circRNAs in RNA sequencing (RNA-seq) datasets, either generated by the investigator or reported in the literature. Here, we present a methodology to identify and analyze circRNAs in RNA-seq datasets, including those archived in repositories. We elaborate on the unique features of circRNAs that require specialized attention in RNA-seq datasets, the software packages designed for circRNA identification, the ongoing efforts to reconstruct the body of circRNAs starting from unique circularizing junctions, and the interacting factors that can be proposed from putative circRNA body sequences. We discuss the advantages and limitations of the current approaches for high-throughput circRNA analysis from RNA-sequencing datasets and identify areas that would benefit from the development of superior bioinformatic tools.


Assuntos
MicroRNAs , RNA Circular , Biologia Computacional/métodos , MicroRNAs/genética , RNA/genética , RNA/metabolismo , RNA não Traduzido , RNA-Seq , Análise de Sequência de RNA/métodos
5.
Genes (Basel) ; 12(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34440432

RESUMO

Mammalian circRNAs are covalently closed circular RNAs often generated through backsplicing of precursor linear RNAs. Although their functions are largely unknown, they have been found to influence gene expression at different levels and in a wide range of biological processes. Here, we investigated if some circRNAs may be differentially abundant in Alzheimer's Disease (AD). We identified and analyzed publicly available RNA-sequencing data from the frontal lobe, temporal cortex, hippocampus, and plasma samples reported from persons with AD and persons who were cognitively normal, focusing on circRNAs shared across these datasets. We identified an overlap of significantly changed circRNAs among AD individuals in the various brain datasets, including circRNAs originating from genes strongly linked to AD pathology such as DOCK1, NTRK2, APC (implicated in synaptic plasticity and neuronal survival) and DGL1/SAP97, TRAPPC9, and KIF1B (implicated in vesicular traffic). We further predicted the presence of circRNA isoforms in AD using specialized statistical analysis packages to create approximations of entire circRNAs. We propose that the catalog of differentially abundant circRNAs can guide future investigation on the expression and splicing of the host transcripts, as well as the possible roles of these circRNAs in AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Plasticidade Neuronal/genética , RNA Circular/genética , Proteína da Polipose Adenomatosa do Colo/genética , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Cinesinas/genética , Masculino , Glicoproteínas de Membrana/genética , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia , Splicing de RNA/genética , Receptor trkB/genética , Análise de Sequência de RNA , Proteínas rac de Ligação ao GTP/genética
6.
PeerJ ; 8: e8681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195049

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a family of debilitating disorders that affects more than 1 million people in the United States. Many animal studies of IBD use a dextran sulfate sodium (DSS) mouse model of colitis that induces rapid and severe colitis symptoms. Although the typical seven-day DSS model is appropriate for many studies, it destroys intestinal barrier function and results in intestinal permeability that is substantially higher than what is typically observed in patients. As such, therapies that enhance or restore barrier integrity are difficult or impossible to evaluate. METHODS: We identify administration conditions that result in more physiologically relevant intestinal damage by systematically varying the duration of DSS administration. We administered 3.0% DSS for four to seven days and assessed disease metrics including weight, fecal consistency, intestinal permeability, spleen weight, and colon length. Histology was performed to assess the structural integrity of the intestinal epithelium. RESULTS: Extended exposure (seven days) to DSS resulted in substantial, unrecoverable loss of intestinal structure and intestinal permeability increases of greater than 600-fold. Attenuated DSS administration durations (four days) produced less severe symptoms by all metrics. Intestinal permeability increased only 8-fold compared to healthy mice, better recapitulating the 2-18 fold increases in permeability observed in patients. The attenuated model retains the hallmark properties of colitis against which to compare therapeutic candidates. Our results demonstrate that an attenuated DSS colitis model obtains clinically relevant increases in intestinal permeability, enabling the effective evaluation of therapeutic candidates that promote barrier function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA