Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
PLoS Pathog ; 10(2): e1003916, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516386

RESUMO

Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cells, resulting in the establishment of a stable latency setpoint. However, little is known about how this infected memory B cell compartment is maintained throughout the life of the host. We have previously demonstrated that immature and transitional B cells are long-term latency reservoirs for murine gammaherpesvirus 68 (MHV68), suggesting that infection of developing B cells contributes to the maintenance of lifelong latency. During hematopoiesis, immature and transitional B cells are subject to B cell receptor (BCR)-mediated negative selection, which results in the clonal deletion of autoreactive B cells. Interestingly, numerous gammaherpesviruses encode homologs of the anti-apoptotic protein Bcl-2, suggesting that virus inhibition of apoptosis could subvert clonal deletion. To test this, we quantified latency establishment in mice inoculated with MHV68 vBcl-2 mutants. vBcl-2 mutant viruses displayed a marked decrease in the frequency of immature and transitional B cells harboring viral genome, but this attenuation could be rescued by increased host Bcl-2 expression. Conversely, vBcl-2 mutant virus latency in early B cells and mature B cells, which are not targets of negative selection, was remarkably similar to wild-type virus. Finally, in vivo depletion of developing B cells during chronic infection resulted in decreased mature B cell latency, demonstrating a key role for developing B cells in the maintenance of lifelong latency. Collectively, these findings support a model in which gammaherpesvirus latency in circulating mature B cells is sustained in part through the recurrent infection and vBcl-2-mediated survival of developing B cells.


Assuntos
Linfócitos B/virologia , Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Infecções Tumorais por Vírus/imunologia , Latência Viral/imunologia , Animais , Apoptose/imunologia , Linfócitos B/citologia , Western Blotting , Diferenciação Celular/imunologia , Sobrevivência Celular/imunologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos B/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA