RESUMO
Mining operations generate sediment erosion rates above those of natural landscapes, causing persistent contamination of floodplains. Riparian vegetation in mine-impacted river catchments plays a key role in the storage/remobilization of metal contaminants. Mercury (Hg) pollution from mining is a global environmental challenge. This study provides an integrative assessment of Hg storage in riparian trees and soils along the Paglia River (Italy) which drains the abandoned Monte Amiata Hg mining district, the 3rd former Hg producer worldwide, to characterize their role as potential secondary Hg source to the atmosphere in case of wildfire or upon anthropic utilization as biomass. In riparian trees and nearby soils Hg ranged between 0.7 and 59.9 µg/kg and 2.2 and 52.8 mg/kg respectively. In trees Hg concentrations were below 100 µg/kg, a recommended Hg limit for the quality of solid biofuels. Commercially, Hg contents in trees have little impact on the value of the locally harvested biomass and pose no risk to human health, although higher values (195-738 µg/kg) were occasionally found. In case of wildfire, up to 1.4*10-3 kg Hg/ha could be released from trees and 27 kg Hg/ha from soil in the area, resulting in an environmentally significant Hg pollution source. Data constrained the contribution of riparian trees to the biogeochemical cycling of Hg highlighting their role in management and restoration plans of river catchments affected by not-remediable Hg contamination. In polluted river catchments worldwide riparian trees represent potential sustainable resources for the mitigation of dispersion of Hg in the ecosystem, considering i) their Hg storage capacity, ii) their potential to be used for local energy production (e.g. wood-chips) through the cultivation and harvesting of biomasses and, iii) their role in limiting soil erosion from riparian polluted riverbanks, probably representing the best pragmatic choice to minimize the transport of toxic elements to the sea.
Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Mercúrio , Mineração , Rios , Árvores , Mercúrio/análise , Rios/química , Recuperação e Remediação Ambiental/métodos , Itália , Poluentes Químicos da Água/análise , Poluentes do Solo/análiseRESUMO
Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.
Assuntos
Ácido Aminolevulínico , Reguladores de Crescimento de Plantas , Ácido Abscísico/metabolismo , Ácido Aminolevulínico/metabolismo , Butadienos , Hemiterpenos , Fotossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Estresse SalinoRESUMO
Plants are continuously exposed to human air pollution, absorbing pollutants in their tissues. Trees can store pollutants in wood, in the annual growth rings, retaining traces of pollutants in the environment. Information on past pollution events are archived by trees, which dendrochemistry, a dendrochronological science combined with chemistry, is able to access. Many authors have suggested that trees could complement the conventional environmental monitoring: a forest archive of pollution events. However, the implications of trees occurrence in polluted areas on planning and management have not yet been discussed. In this article, we investigate whether forest archives exist and whether they should be integrated into the network of existing monitoring stations. We use a case study, the Veneto region of Italy, one of the most polluted areas in Europe, to examine the occurrence of trees around 28 industrial plants retrieved from a European pollution register. We propose planning actions to develop the latent potential of these forest archives for environmental monitoring, which society may benefit. We follow three steps: (a) assessing the cover and composition of tree canopies around the industrial plants, (b) inventorying the existing artificial air monitoring stations in order to discover whether pollutants around the industrial plants are already monitored, (c) assessing land use patterns in order to identify which are the receptors of air pollution and enhance the forest archive in the future. These spatial analyses are conducted in a 1-km radius buffer with the industrial plant as the centre. Results show that forest archives are available, with cover and composition suitable for dendrochemistry studies. Artificial monitoring stations are too far from industrial plants or have been installed recently, unable to provide historical data. Trees are an alternative source of pollution data. Receptors of air pollution include a diversity of urban, rural and agricultural lands, where forest archives can be managed and conserved through a variety of actions. Environmental protection agencies should value these trees, preserving them and accessing the records held in this forest archive. Similar inventories must be promoted in other industrialised regions of the world even at larger scales. Studies like this one should also be incorporated into landscape or urban planning processes.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Europa (Continente) , Florestas , Humanos , Itália , ÁrvoresRESUMO
Pollution affects most of the urban and forest environments at different levels causing well-known effects on human and plant health. The influence that pollutants exert on plant-associated microbiota might direct plant health and, in some cases, also the removal of pollutants by plants. With the advent of nanotechnologies, an increasing amount of engineered nanoparticles are being introduced into the environment, and consequently, their impact on plant-associated microorganisms needs to be investigated. In this context, silver nanoparticles (Ag-NPs) were experimentally supplied at leaf and root level of poplar plants to assess Ag-NPs effects on plant microbiota. Leaf Ag-NP treatment increased bacteria and fungi evenness and determined a significant reduction in both microbial groups, while root Ag-NP treatment reduced the bacterial and fungal biodiversity. Bioinformatics functional analysis showed that Ag-NP treatment reduced the aerobic and stimulated facultative anaerobic and oxidative stress-tolerant bacteria. Our study offers new insights into the effects of Ag-NPs on both phyllosphere and rhizosphere poplar-associated microbiota and may represent a first attempt to understand the behavior of microbial communities of a tree species growing in a polluted environment.
Assuntos
Anti-Infecciosos/farmacologia , Biota/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Nanopartículas Metálicas , Populus/microbiologia , Prata/farmacologia , Bactérias/classificação , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologiaRESUMO
The present study evaluated an integrated biomonitoring approach based on three different bioindicators: tree rings, lichens, and beetles in a complex environment (urban-industrial-forest). In Central Italy, four sampling sites were selected to assess the anthropogenic impact of cement plants taking into account (1) long-term exposure (1988-2020) through the analysis of trace elements in tree rings of Quercus pubescens; (2) medium-term exposure (2020-2021) through the analysis of trace elements in thalli (outermost portions) of the lichen Xanthoria parietina; (3) short-term exposure in spring 2021 through the bioaccumulation and evaluation of sample vitality in transplants of the lichen Evernia prunastri and a periodic survey of entomological biodiversity carried out during spring and summer 2021. Trace elements of industrial origin were found in tree rings, with different levels of accumulation between 1988 and 2020 and a maximum in 2012. Native thalli of the lichen X. parietina showed an overall low bioaccumulation of trace elements except for Cr, probably reflecting the influence of national lockdown measures. The transplants of E. prunastri showed a weak stress response in the industrial and urban sites, but not in the forest, and identified Tl and V as the main elements contributing to atmospheric contamination, with peaks at the industrial sites. Concerning the beetles, a significantly lower number of species was found at the Semonte industrial site.
Assuntos
Monitoramento Ambiental , Líquens , Líquens/química , Animais , Itália , Besouros , Indústrias , Materiais de ConstruçãoRESUMO
Bioavailability of potentially toxic elements (PTEs) from the Earth's crust in the soil, e.g., As, Hg, Tl, and Pb, can pose a potential environmental and health risk because of human activities, especially related to mining extraction. The biomonitoring allows to detect PTE contamination through their measurement in living organisms as trees. However, the choice of which plant species and tissue to analyse is a key point to be evaluated in relation to PTE absorption and translocation. The aim of this work was to assess the As, Hg, Tl, and Pb distribution in Castanea sativa Mill. plant tissues, given its importance for both biomass and food production. The study identified two sites in the Alpi Apuane (Italy), with similar environmental conditions (e.g., elevation, exposure, forest type, and tree species) but different soil PTE levels. The topsoil was characterized, and the PTE fractions with different bioavailability were measured. The PTE concentrations were also analysed in chestnut plant tissues (leaves, bark, wood, nuts, and shells) in parallel with and evaluation of plant health status through the determination of micro and macronutrient concentrations and the leaf C and N isotope composition (δ13C or δ15N). Chestnut trees showed a good health status highlighting its suitability for Tl, As, Hg, and Pb biomonitoring, displaying a tissue-specific PTE allocation. Thallium and Hg were detected in all plant tissues at similar concentrations, As was found in leaves, wood, and nuts while Pb only in the bark. The δ15N negatively correlated with leaf Mn and Tl concentrations, suggesting possible changes in N source and/or plant metabolism due to the high contamination level and acid soil pH. Thallium in La Culla site trees was associated with its presence in the carbonate rocks but not in the topsoil, highlighting the potentiality of chestnut in providing valuable information for geochemical surveying.
Assuntos
Monitoramento Ambiental , Fagaceae , Chumbo , Mineração , Poluentes do Solo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Itália , Chumbo/análise , Chumbo/metabolismo , Mercúrio/análise , Mercúrio/metabolismo , Arsênio/análise , Arsênio/metabolismo , Tálio/análise , Monitoramento Biológico/métodosRESUMO
The development of tools to quickly identify the fate of damaged trees after a stress event such as a wildfire is of great importance. In this context, an innovative approach to assess irreversible physiological damage in trees could help to support the planning of management decisions for disturbed sites to restore biodiversity, protect the environment and understand the adaptations of ecosystem functionality. The vitality of trees can be estimated by several physiological indicators, such as cambium activity and the amount of starch and soluble sugars, while the accumulation of ethanol in the cambial cells and phloem is considered an alarm sign of cell death. However, their determination requires time-consuming laboratory protocols, making the approach impractical in the field. Biosensors hold considerable promise for substantially advancing this field. The general objective of this review is to define a system for quantifying the plant vitality in forest areas exposed to fire. This review describes recent electrochemical biosensors that can detect plant molecules, focusing on biosensors for glucose, fructose, and ethanol as indicators of tree vitality.
Assuntos
Técnicas Biossensoriais , Árvores , Incêndios Florestais , Árvores/fisiologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Humanos , Estresse Fisiológico , Metanol/metabolismo , Açúcares/metabolismoRESUMO
Trees have been used for phytoremediation and as biomonitors of air pollution. However, the mechanisms by which trees mitigate nanoparticle pollution in the environment are still unclear. We investigated whether two important tree species, European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.), are able to take up and transport differently charged gold nanoparticles (Au-NPs) into their stem by comparing leaf-to-root and root-to-leaf pathways. Au-NPs were taken up by roots and leaves, and a small fraction was transported to the stem in both species. Au-NPs were transported from leaves to roots but not vice versa. Leaf Au uptake was higher in beech than in pine, probably because of the higher stomatal density and wood characteristics of beech. Confocal (3D) analysis confirmed the presence of Au-NPs in trichomes and leaf blade, about 20-30 µm below the leaf surface in beech. Most Au-NPs likely penetrated into the stomatal openings through diffusion of Au-NPs as suggested by the 3D XRF scanning analysis. However, trichomes were probably involved in the uptake and internal immobilization of NPs, besides their ability to retain them on the leaf surface. The surface charge of Au-NPs may have played a role in their adhesion and uptake, but not in their transport to different tree compartments. Stomatal conductance did not influence the uptake of Au-NPs. This is the first study that shows nanoparticle uptake and transport in beech and pine, contributing to a better understanding of the interactions of NPs with different tree species.
Assuntos
Fagus , Nanopartículas Metálicas , Pinus sylvestris , Pinus , Fagus/metabolismo , Ouro/metabolismo , Árvores , Folhas de Planta/metabolismoRESUMO
Understanding the internal functioning of natural systems often requires interdisciplinary approaches and competences that allow encompassing and disentangling different and strictly intertwined physical and biological processes. Hydrology and ecophysiology are examples of complementary and highly interconnected disciplines that share water as a common analysis element when investigating the functioning of vegetated ecosystems. In this discussion paper, we call for more frequent and active dialogue and collaboration between (field) hydrologists and ecophysiologists to study natural processes at the boundary between the two disciplines. We report some examples of the specific approaches of hydrologists and ecophysiologists to analyse water movement in the soil-vegetation-atmosphere continuum at increasing spatial scales, highlighting how the same mechanisms can be seen from different, but largely complementary, points of view. We argue that these different perspectives can and should be merged in order to overcome possibly fragmented vision of complex processes and provide a more holistic comprehension of ecohydrological mechanisms in forest ecosystems.
Assuntos
Ecossistema , Florestas , Hidrologia , Pesquisa Interdisciplinar , Estudos InterdisciplinaresRESUMO
European beech (Fagus sylvatica L.) is a widespread and economically important temperate tree species in Europe. The warmer temperatures and severe drought events expected in the future, especially in Mediterranean areas, could affect the vitality and productivity of beech stands that have been intensively used in these areas in the past. Here, we aim to assess the wood anatomical responses of beech to environmental variability and silvicultural practices by investigating three beech stands along an elevational gradient (1,200 to 1,950 m a.s.l.) in the Apennines (Italy). Therefore, we quantified several anatomical traits of the xylem vessels related to tree hydraulics from five trees per stand and investigated variability between and within tree rings. Our results suggest generally limited trait plasticity, with higher plasticity of mean vessel lumen area and theoretical hydraulic conductivity, while maximum vessel size and mean hydraulic diameter were less plastic, likely because of the stronger determination by tree height. High-elevation trees were hydraulically more limited than trees at a mid and lower elevation as indicated by the more conservative anatomical configuration, i.e., comparatively smaller vessels and a 50% tighter trait coordination. Cessation of coppicing resulted in a hydraulically safer anatomy with comparatively smaller vessels at the most intensively used site (1,200 m), triggered by increased water demand due to an increase in canopy density, and thus, an increase in stand transpiration. Furthermore, maximum vessel size at the beginning showed different climate sensitivity compared to the rest of the tree ring, while intra-ring anatomical profiles showed little difference between normal and the 5 years with the highest and lowest mean temperature and precipitation. Overall, this study highlights the challenges to separate the externally induced medium- to longer-term responses from ontogenetically determined patterns. We, therefore, call for more comprehensive studies to further explore and verify the plasticity of wood anatomical traits in European beech in response to short- to long-term environmental fluctuations to gain a mechanistic understanding useful for sustainable forest ecosystems.
RESUMO
MicroRNAs (miRNAs) are a class of non-coding molecules involved in the regulation of a variety of biological processes. They have been identified and characterized in several plant species, but only limited data are available for Arundo donax L., one of the most promising bioenergy crops. Here we identified, for the first time, A. donax conserved and novel miRNAs together with their targets, through a combined analysis of high-throughput sequencing of small RNAs, transcriptome and degradome data. A total of 134 conserved miRNAs, belonging to 45 families, and 27 novel miRNA candidates were identified, along with the corresponding primary and precursor miRNA sequences. A total of 96 targets, 69 for known miRNAs and 27 for novel miRNA candidates, were also identified by degradome analysis and selected slice sites were validated by 5'-RACE. The identified set of conserved and novel candidate miRNAs, together with their targets, extends our knowledge about miRNAs in monocots and pave the way to further investigations on miRNAs-mediated regulatory processes in A. donax, Poaceae and other bioenergy crops.
RESUMO
The introduction of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in Europe has been one of the most important and extensive silvicultural experiments since the 1850s. This success was mainly supported by the species' wide genome and phenotypic plasticity even if the genetic origin of seeds used for plantations is nowadays often unknown. This is especially true for all the stands planted before the IUFRO experimentation in the 1960s. In this paper, a methodology to estimate the Douglas-fir provenances currently growing in Italy is proposed. The raw data from the last Italian National Forest Inventory were combined with literature information to obtain the current spatial distribution of the species in the country representing its successful introduction. Afterwards, a random forest classification model was run using downscaled climatic data as predictors and the classification scheme adopted in previous research studies in the Pacific North West of America. The analysis highlighted good matching between the native and the introduction range in Italy. Coastal provenances from British Columbia and the dry coast of Washington were detected as the most likely seed sources, covering 63.4% and 33.8% of the current distribution of the species in the country, respectively. Interior provenances and those from the dry coast of Oregon were also represented but limited to very few cases. The extension of the model on future scenarios predicted a gradual shift in suitable provenances with the dry coast of Oregon in the mid-term (2050s) and afterwards California (2080s) being highlighted as possible new seed sources. However, only further analysis with genetic markers and molecular methods will be able to confirm the proposed scenarios. A validation of the genotypes currently available in Italy will be mandatory as well as their regeneration processes (i.e., adaptation), which may also diverge from those occurring in the native range due to a different environmental pressure. This new information will also add important knowledge, allowing a refinement of the proposed modeling framework for a better support for forest managers.
RESUMO
The recent climate projections predict that the intensity and frequency of extreme events will increase as a result of overall increasing mean temperature and reduced precipitations in the temperate regions of the Northern Hemisphere. How these changes will influence the harshness of the environment and the performances of trees growing under natural conditions remains an open question. In this commentary article, we would like to look at the concept of suboptimal growth conditions, widening its application from the traditional in vitro manipulation to trees growing in open air, addressing the main limitations and strengths of the upscaling results from cell to tree. We believe that the traditional single dose-effect approach is not suitable to explain the complex interactions between genotype and environment, occurring in open field or forest stands, where the intensity and frequency of the events are uncontrolled and unpredictable. As forests provide a wide range of ecosystem services, new parameters should be considered in the definition of the response thresholds in addition to growth. Thus, within this Special Issue, we stimulate the discussion over the development of new approaches and technologies that are able to define suitable threshold responses of trees under suboptimal natural conditions, with the aim to furnish new insights on the acclimation and adaptation processes in woody species under global change.
RESUMO
Thirty-two trace elements were examined in the tree rings of downy oak to evaluate the pollution levels close to a cement plant isolated in a rural context and an industrial area where multiple sources of air pollution are or were present. Tree cores were collected from trees growing 1 km from both the cement plant and the industrial area that are located 8 km from each other. The analysis of the trace elements was performed on annual tree rings from 1990 to 2016 using laser ablation inductively coupled plasma mass spectrometry. Trace elements Cs, Mg, Mn, S and Zn reflected the emission history of the cement plant. Their values have increased since early 2000s, when the cement plant started its activity. However, the lack of significant trends of pollutants in the tree rings from the industrial area and the possible effect of translocation and volatility of some elements left open questions. The very weak changes of the other trace elements in the period 1990-2016 suggest those elements do not mark any additional effect of the industrial activity on the background pollution. The results confirm that downy oak trees growing close to isolated industrial plants must be considered a pollution forest archive accessible through dendrochemistry.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Oligoelementos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Indústrias , Oligoelementos/análiseRESUMO
Worldwide, tropospheric ozone (O3) is a potential threat to wood production, but our understanding of O3 economic impacts on forests is still limited. To overcome this issue, we developed an approach for integrating O3 risk modelling and economic estimates, by using the Italian forests as a case study. Results suggested a significant impact of O3 expressed in terms of stomatal flux with an hourly threshold of uptake (Y = 1 nmol O3 m-2 leaf area s-1 to represent the detoxification capacity of trees), i.e. POD1. In 2005, the annual POD1 averaged over Italy was 20.4 mmol m-2 and the consequent potential damage ranged from 790.90 M to 2.85 B of capital value (i.e. 255-869 ha-1, on average) depending on the interest rate. The annual damage ranged from 31.6 to 57.1 M (i.e. 10-17 ha-1 per year, on average). There was also a 1.1% reduction in the profitable forest areas, i.e. with a positive Forest Expectation Value (FEV), with significant declines of the annual national wood production of firewood (- 7.5%), timber pole (- 7.4%), roundwood (- 5.0%) and paper mill (- 4.8%). Results were significantly different in the different Italian regions. We recommend our combined approach for further studies under different economic and phytoclimatic conditions.
RESUMO
Arundo donax L. is an invasive grass species with high tolerance to a wide range of environmental stresses. The response of potted A. donax plants to soil stress characterized by prolonged exposure (43 days) to salinity (+Na), to high concentration of phosphorus (+P), and to the combination of high Na and P (+NaP) followed by 14 days of recovery under optimal nutrient solution, was investigated along the entire time-course of the experiment. After an exposure of 43 days, salinity induced a progressive decline in stomatal conductance that hampered A. donax growth through diffusional limitations to photosynthesis and, when combined with high P, reduced the electron transport rate. Isoprene emission from A. donax leaves was stimulated as Na+ concentration raised in leaves. Prolonged growth in P-enriched substrate did not significantly affect A. donax performance, but decreased isoprene emission from leaves. Prolonged exposure of A. donax to + NaP increased the leaf level of H2O2, stimulated the production of carbohydrates, phenylpropanoids, zeaxanthin and increased the de-epoxidation state of the xanthophylls. This might have resulted in a higher stress tolerance that allowed a fast and full recovery following stress relief. Moreover, the high amount of ABA-glucose ester accumulated in leaves of A. donax exposed to + NaP might have favored stomata re-opening further sustaining the observed prompt recovery of photosynthesis. Therefore, prolonged exposure to high P exacerbated the negative effects of salt stress in A. donax plants photosynthetic performances, but enhanced activation of physiological mechanisms that allowed a prompt and full recovery after stress.
Assuntos
Fósforo , Poaceae , Estresse Salino , Solo , Peróxido de Hidrogênio , Fósforo/farmacologia , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Estresse Salino/genética , Solo/químicaRESUMO
Drought is expected to become an increasingly important factor limiting tree growth caused by climate change. Two divergent clones of Populus nigra (58-861 and Poli) originating from contrasting environments were subjected to water limitation (WL) to elucidate whether they differ in tolerance to drought, which mechanisms to avoid stress they exhibit and whether drought has an impact on the interactions between roots and shoots. Limiting water availability caused photosynthetic rate and total non-structural carbohydrate (TNC) levels to decrease in 58-861. However, starch-degrading enzyme activity and gene expression were induced in roots, and soluble sugar levels were higher than in well-watered (WW) plants. These data suggest that assimilation and partitioning of carbon to the roots are decreased, resulting in mobilization of stored starch. In contrast, the photosynthetic rate of Poli was reduced only late in the treatment, and carbohydrate levels in WL plants were higher than in WW plants. Superoxide dismutase (SOD) activity and gene expression were higher in Poli than in 58-861, even in WW plants, leading to a higher capacity to defend against oxidative stress.
Assuntos
Metabolismo dos Carboidratos , Secas , Estresse Oxidativo , Fotossíntese , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Fenótipo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Estômatos de Plantas/metabolismo , Populus/genética , RNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismoRESUMO
Changes of stem diameter were continuously monitored during winter in two field-grown poplar clones, using automatic point dendrometers. The objective of this study was to find an analytical solution to seasonal synchronization of stem diameter oscillations and low air temperatures. The study identified to what extent and with what frequency low air temperature induced stem diameter variation in 'Dvina' (P. deltoides) and 'I-214' (Populus x canadensis) poplar clones, after exposure to summer drought. The patterns of reversible stem shrinkage were related to the cycles of low air temperature. Hourly and daily evidence showed that 'I-214' was more sensitive to low air temperatures than 'Dvina'. The analysis of raw data and graphic details implemented with the study of derivative tests allowed an increase in the general sensitivity of the investigation applied to describe the response of poplar clones to environmental conditions. Given these diameter fluctuation patterns, automatic point dendrometers were confirmed to be a reliable non-invasive method for testing the sensitivity of diameter variation to cold temperature. Variation in rate and duration of daily stem shrinkage in response to low air temperature in winter appeared to occur independently of the effects of water deficit suffered by plants the previous summer.
Assuntos
Populus/fisiologia , Temperatura Baixa , Secas , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/fisiologia , Populus/química , Populus/genética , Estações do AnoRESUMO
The potential of Arundo donax to grow in degraded soils, characterized by excess of salinity (Na+), and phosphorus deficiency (-P) or excess (+P) also coupled with salinity (+NaP), was investigated by combining in vivo plant phenotyping, quantification of metabolites and ultrastructural imaging of leaves with a transcriptome-wide screening. Photosynthesis and growth were impaired byâ¯+â¯Na, -P andâ¯+â¯NaP. Whileâ¯+â¯Na caused stomatal closure, enhanced biosynthesis of carotenoids, sucrose and isoprene and impaired anatomy of cell walls, +P negatively affected starch production and isoprene emission, and damaged chloroplasts. Finally, +NaP largely inhibited photosynthesis due to stomatal limitations, increased sugar content, induced/repressed a number of genes 10 time higher with respect toâ¯+â¯P andâ¯+â¯Na, and caused appearance of numerous and large plastoglobules and starch granules in chloroplasts. Our results show that A. donax is sensitive to unbalances of soil ion content, despite activation of defensive mechanisms that enhance plant resilience, growth and biomass production of A. donax under these conditions.