Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Malar J ; 21(1): 299, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284305

RESUMO

BACKGROUND: The recent worldwide increase in malaria cases highlights the need for renewed efforts to eliminate malaria. The World Health Organization advocates that malaria surveillance becomes a core intervention. Current methods to estimate the malaria burden rely on clinical malaria case reports and surveys of asymptomatic parasite infection mainly from children < 5 years. In this study the hypothesis was that screening blood donors for malaria parasites would provide real-time information on the asymptomatic reservoir of parasites in the adult population and mirror other surveillance data. METHODS: This study was conducted in Malawi, a high malaria burden country, at the Malawi Blood Transfusion Service, which collects blood units at donation sites countrywide. A secondary analysis was conducted on data obtained from a prior Sysmex XN-31 analyser malaria diagnostic evaluation study utilizing residual donor blood samples. XN-31 malaria results, donor age, sex, geographical location, and collection date, were analysed using standard statistical methods. RESULTS: The malaria parasite prevalence in blood donors was 11.6% (614/5281 samples) increasing seasonally from December (8.6%) to April (18.3%). The median age was 21 years and 45.9% of donors were from urban areas, which showed a lower prevalence compared to non-urban regions. The Central administrative region had the highest and the Northern region the lowest malaria parasite prevalence. The donors were predominantly male (80.2%), 13.1% of whom had malaria parasites, which was significantly higher (p < 0.0001) than for female donors (7.4%). Multivariable logistic regression analysis showed that age, location, and collection month were significant predictors of malaria positivity in males, whereas in females only location was significant. There was no gender difference in parasite density nor gametocyte carriage. CONCLUSIONS: This study demonstrates the powerful utility of screening blood donors for malaria parasites using the XN-31, which not only improves the safety of blood transfusion, but provides valuable complementary surveillance data for malaria control, especially targeting males, who are generally excluded from periodic household surveys. Blood donations are sourced countrywide, year-round, and thus provide dynamic, real-time information on the malaria burden. Furthermore, the XN-31 identifies the asymptomatic human reservoir of infectious gametocytes, which must be targeted to eliminate malaria.


Assuntos
Malária Falciparum , Malária , Adulto , Criança , Masculino , Feminino , Humanos , Adulto Jovem , Doadores de Sangue , Malária Falciparum/epidemiologia , Plasmodium falciparum , Malaui/epidemiologia , Parasitemia/diagnóstico , Parasitemia/epidemiologia , Parasitemia/parasitologia , Malária/diagnóstico , Malária/epidemiologia , Infecções Assintomáticas/epidemiologia , Proteínas do Sistema Complemento
2.
Malar J ; 18(1): 15, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670023

RESUMO

BACKGROUND: Early and accurate diagnosis of malaria is a critical aspect of efforts to control the disease, and several diagnostic tools are available. Microscopic assessment of a peripheral blood smear enables direct visualization of parasites in infected red blood cells and is the clinical diagnostic gold standard. However, it is subjective and requires a high level of skill. Numerous indirect detection methods are in use, but are not ideal since surrogate markers of infection are measured. This study describes the first clinical performance evaluation of the automated Sysmex XN-30 analyser, which utilizes fluorescence flow cytometry to directly detect and quantitate parasite-infected red blood cells. RESULTS: Residual EDTA blood samples from suspected malaria cases referred for routine diagnosis were analysed on the XN-30. Parasitaemia was reported as a percentage, as well as absolute numbers of infected red blood cells, and scattergrams provided a visual image of the parasitized red blood cell clusters. The results reported by the XN-30 correlated with microscopy and the analyser demonstrated 100% sensitivity and specificity. Measurements were reproducible and storage of samples at room temperature did not affect the parameters. Several Plasmodium species were detected, including Plasmodium falciparum, Plasmodium vivax and Plasmodium ovale. The XN-30 also identified the transmissible gametocytes as a separate cluster on the scattergrams. Abnormal red blood cell indices (low haemoglobin and raised reticulocyte counts), haemoglobinopathies and thrombocytopenia did not interfere with the detection of parasites. The XN-30 also generated a concurrent full blood count for each sample. CONCLUSIONS: The novel technology of the Sysmex XN-30 provides a robust, rapid, automated and accurate platform for diagnosing malaria in a clinical setting. The objective enumeration of red blood cells infected with Plasmodium species makes it suitable for global use and allows monitoring of the parasite load once therapy has been initiated, thereby providing an early marker of drug resistance. The automated generation of a full blood count for each sample provides an opportunity for detecting unsuspected cases. Asymptomatic carriers can also be identified, which will be useful in blood transfusion centres, and will enable treatment of these individuals to prevent the spread of the disease.


Assuntos
Automação Laboratorial/métodos , Malária/diagnóstico , Plasmodium falciparum/isolamento & purificação , Plasmodium ovale/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Automação Laboratorial/instrumentação , Eritrócitos/parasitologia , Citometria de Fluxo , Humanos , Malária/sangue , Malária Falciparum/sangue , Malária Falciparum/diagnóstico , Malária Vivax/sangue , Malária Vivax/diagnóstico , Parasitemia/parasitologia , Sensibilidade e Especificidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-29941635

RESUMO

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

4.
J Antimicrob Chemother ; 73(5): 1279-1290, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420756

RESUMO

Objectives: Novel chemical tools to eliminate malaria should ideally target both the asexual parasites and transmissible gametocytes. Several imidazopyridazines (IMPs) and 2-aminopyridines (2-APs) have been described as potent antimalarial candidates targeting lipid kinases. However, these have not been extensively explored for stage-specific inhibition of gametocytes in Plasmodium falciparum parasites. Here we provide an in-depth evaluation of the gametocytocidal activity of compounds from these chemotypes and identify novel starting points for dual-acting antimalarials. Methods: We evaluated compounds against P. falciparum gametocytes using several assay platforms for cross-validation and stringently identified hits that were further profiled for stage specificity, speed of action and ex vivo efficacy. Physicochemical feature extraction and chemogenomic fingerprinting were applied to explore the kinase inhibition susceptibility profile. Results: We identified 34 compounds with submicromolar activity against late stage gametocytes, validated across several assay platforms. Of these, 12 were potent at <100 nM (8 were IMPs and 4 were 2-APs) and were also active against early stage gametocytes and asexual parasites, with >1000-fold selectivity towards the parasite over mammalian cells. Front-runner compounds targeted mature gametocytes within 48 h and blocked transmission to mosquitoes. The resultant chemogenomic fingerprint of parasites treated with the lead compounds revealed the importance of targeting kinases in asexual parasites and gametocytes. Conclusions: This study encompasses an in-depth evaluation of the kinase inhibitor space for gametocytocidal activity. Potent lead compounds have enticing dual activities and highlight the importance of targeting the kinase superfamily in malaria elimination strategies.


Assuntos
Aminopiridinas/farmacologia , Antimaláricos/farmacologia , Fosfotransferases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/química , Aminopiridinas/isolamento & purificação , Antimaláricos/química , Antimaláricos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Plasmodium falciparum/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação
5.
Malar J ; 15: 32, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791088

RESUMO

BACKGROUND: Malaria remains a global health problem and the majority of deaths are caused by Plasmodium falciparum parasites. Due to the rapid emergence of drug-resistant strains, novel avenues of research on the biology of the parasite are needed. The massive proliferation of asexual, intra-erythrocytic parasites every 48 h could kill the human host prior to transmission of slow-developing gametocytes to the mosquito vector. A self-induced P. falciparum programmed cell death mechanism has been hypothesized to maintain this balance between the parasite and its two hosts, but molecular participants of the cell death pathway in P. falciparum have not been characterized. Proteins with SWIB/MDM2 domains play a key role in metazoan programmed cell death and this study provides the first evaluation of two parasite SWIB/MDM2 homologues, PF3D7_0518200 (PfMDM2) and PF3D7_0611400 (PfSWIB). METHODS: The function of these proteins was assessed by predicting their structural topology with the aid of bioinformatics and determining their location within live transgenic parasites, expressing green fluorescent protein-tagged PfMDM2 and PfSWIB under normal and elevated temperatures, which mimic fever and which are known to induce a programmed cell death response. Additionally, P. falciparum phage display library technology was used to identify binding partners for the two parasite SWIB/MDM2 domains. RESULTS: Structural features of the SWIB/MDM2 domains of PfMDM2 and PfSWIB, suggested that they are chromatin remodelling factors. The N-terminal signal sequence of PfMDM2 directed the protein to the mitochondrion under both normal and heat stress conditions. Plasmodium falciparum phage display library technology revealed that the C-terminal SWIB/MDM2 domain of PfMDM2 interacted with a conserved protein containing a LisH domain. PfSWIB localized to the cytoplasm under normal growth conditions, while approximately 10% of the heat-stressed trophozoite-stage parasites presented a rapid but short-lived nuclear localization pattern. Two PfSWIB binding partners, a putative Aurora-related kinase and a member of the inner membrane complex, were identified. CONCLUSION: These novel data provide insight into the function of two parasite SWIB/MDM2 homologues and suggest that PfMDM2 plays a role within the mitochondrion and that PfSWIB is involved in a stage-specific, heat-stress, response pathway.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Apoptose/fisiologia , Biologia Computacional/métodos , Resposta ao Choque Térmico/fisiologia , Biblioteca de Peptídeos , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Protozoários/metabolismo
7.
Biochim Biophys Acta ; 1844(12): 2306-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288451

RESUMO

The ability of the malaria parasite, Plasmodium falciparum, to proliferate within the human host depends on its invasion of erythrocytes. Erythrocyte binding-like (EBL) proteins play crucial roles in the attachment of merozoites to human erythrocytes by binding to specific receptors on the cell surface. In this study, we have carried out a bioinformatics analysis of the three EBL proteins EBA-140, EBA-175 and EBA-181 and show that they contain a large amount of intrinsic disorder in particular within the RIII-V domains. The functional role of these domains has so far not been identified, although antibodies raised against these regions were shown to inhibit parasite invasion. Here, we obtain a more complete structural and dynamic view of the EBL proteins by focusing on the biophysical characterization of a smaller construct of the RIII-V regions of EBA-181 (EBA-181945-1097). We show using a number of techniques that EBA-181945-1097 is intrinsically disordered, and we obtain a detailed structural and dynamic characterization of the protein at atomic resolution using nuclear magnetic resonance (NMR) spectroscopy. Our results show that EBA-181945-1097 is essentially a statistical coil with the presence of several turn motifs and does not possess transiently populated secondary structures as is common for many intrinsically disordered proteins that fold via specific, pre-formed molecular recognition elements.

8.
Malar J ; 14: 213, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25994518

RESUMO

BACKGROUND: The discovery of malaria transmission-blocking compounds is seen as key to malaria elimination strategies and gametocyte-screening platforms are critical filters to identify active molecules. However, unlike asexual parasite assays measuring parasite proliferation, greater variability in end-point readout exists between different gametocytocidal assays. This is compounded by difficulties in routinely producing viable, functional and stage-specific gametocyte populations. Here, a parallel evaluation of four assay platforms on the same gametocyte populations was performed for the first time. This allowed the direct comparison of the ability of different assay platforms to detect compounds with gametocytocidal activity and revealed caveats in some assay readouts that interrogate different parasite biological functions. METHODS: Gametocytogenesis from Plasmodium falciparum (NF54) was optimized with a robust and standardized protocol. ATP, pLDH, luciferase reporter and PrestoBlue® assays were compared in context of a set of 10 reference compounds. The assays were performed in parallel on the same gametocyte preparation (except for luciferase reporter lines) using the same drug preparations (48 h). The remaining parameters for each assay were all comparable. RESULTS: A highly robust method for generating viable and functional gametocytes was developed and comprehensively validated resulting in an average gametocytaemia of 4%. Subsequent parallel assays for gametocytocidal activity indicated that different assay platforms were not able to screen compounds with variant chemical scaffolds similarly. Luciferase reporter assays revealed that synchronized stage-specific gametocyte production is essential for drug discovery, as differential susceptibility in various gametocyte developmental populations is evident. CONCLUSIONS: With this study, the key parameters for assays aiming at testing the gametocytocidal activity of potential transmission blocking molecules against Plasmodium gametocytes were accurately dissected. This first and uniquely comparative study emphasizes differential effects seen with the use of different assay platforms interrogating variant biological systems. Whilst this data is informative from a biological perspective and may provide indications of the drug mode of action, it does highlight the care that must be taken when screening broad-diversity chemotypes with a single assay platform against gametocytes for which the biology is not clearly understood.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Malária/prevenção & controle , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/efeitos dos fármacos , Erradicação de Doenças
9.
Biochim Biophys Acta ; 1830(11): 5326-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23954205

RESUMO

BACKGROUND: Malaria is a devastating disease and Plasmodium falciparum is the most lethal parasite infecting humans. Understanding the biology of this parasite is vital in identifying potential novel drug targets. During every 48-hour intra-erythrocytic asexual replication cycle, a single parasite can produce up to 32 progeny. This extensive proliferation implies that parasites require substantial amounts of lipid precursors for membrane biogenesis. Glycerol kinase is a highly conserved enzyme that functions at the interface of lipid synthesis and carbohydrate metabolism. P. falciparum glycerol kinase catalyzes the ATP-dependent phosphorylation of glycerol to glycerol-3-phosphate, a major phospholipid precursor. METHODS: The P. falciparum glycerol kinase gene was disrupted using double crossover homologous DNA recombination to generate a knockout parasite line. Southern hybridization and mRNA analysis were used to verify gene disruption. Parasite growth rates were monitored by flow cytometry. Radiolabelling studies were used to assess incorporation of glycerol into parasite phospholipids. RESULTS: Disruption of the P. falciparum glycerol kinase gene produced viable parasites, but their growth was significantly reduced to 56.5±1.8% when compared to wild type parasites. (14)C-glycerol incorporation into the major phospholipids of the parasite membrane, phosphatidylcholine and phosphatidylethanolamine, was 48.4±10.8% and 53.1±5.7% relative to an equivalent number of wild type parasites. CONCLUSIONS: P. falciparum glycerol kinase is required for optimal intra-erythrocytic asexual parasite development. Exogenous glycerol may be used as an alternative carbon source for P. falciparum phospholipid biogenesis, despite the lack of glycerol kinase to generate glycerol-3-phosphate. GENERAL SIGNIFICANCE: These studies provide new insight into glycerolipid metabolism in P. falciparum.


Assuntos
Eritrócitos/metabolismo , Glicerol Quinase/metabolismo , Glicerol/metabolismo , Parasitos/crescimento & desenvolvimento , Fosfolipídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Glicerol Quinase/genética , Parasitos/genética , Parasitos/metabolismo , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética
11.
Haematologica ; 98(12): 1972-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077844

RESUMO

Hereditary pyropoikilocytosis is a severe hemolytic anemia caused by spectrin deficiency and defective spectrin dimer self-association, typically found in African populations. We describe two Utah families of northern European ancestry including 2 propositi with atypical non-microcytic hereditary pyropoikilocytosis, 7 hereditary elliptocytosis members and one asymptomatic carrier. The underlying molecular defect is a novel mutation in the alpha(α) spectrin gene, SPTA(R34P) that impairs spectrin tetramer formation. It is inherited in trans to the hypomorphic SPTA(αLELY) in the 2 propositi and 5 of 7 hereditary elliptocytosis individuals indicating that SPTA(αLELY) is not the sole determinant of the variable clinical expression. α Spectrin mRNA was mildly decreased in all hereditary elliptocytosis subjects, whereas both hereditary pyropoikilocytosis propositi had a severe decrease to ~10% of normal. Genotyping identified a unique SPTA intragenic crossover and uniparental disomy in one hereditary elliptocytosis individual. Two additional crossover events demonstrated the susceptibility of SPTA gene to rearrangement and revealed a novel segregation of the two SPTA(αLELY) mutations. We conclude that the profound phenotypic heterogeneity in these families can be attributed to the SPTA(R34P) mutation in combination with: 1) inheritance in trans of either SPTA(αLELY); or 2) the wild-type SPTA; 3) a decrease of α spectrin mRNA; and 4) SPTA intragenic crossover.


Assuntos
Eliptocitose Hereditária/genética , Éxons/genética , Mutação/genética , Fenótipo , Espectrina/química , Espectrina/genética , Adulto , Idoso , Eliptocitose Hereditária/diagnóstico , Feminino , Humanos , Masculino , Linhagem , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Blood Adv ; 6(24): 6187-6197, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36264096

RESUMO

Sickle cell disease (SCD) is a common condition within sub-Saharan Africa and associated with high under-5 mortality (U5M). The American Society of Hematology instituted the Consortium on Newborn Screening in Africa (CONSA) for SCD, a 7-country network of sites to implement standardized newborn hemoglobinopathy screening and early intervention for children with SCD in sub-Saharan Africa. CONSA's overall hypothesis is that early infant SCD screening and entry into standardized, continuous care will reduce U5M compared with historical estimates in the region. Primary trial objectives are to determine the population-based birth incidence of SCD and effectiveness of early standardized care for preventing early mortality consortium-wide at each country's site(s). Secondary objectives are to establish universal screening and early interventions for SCD within clinical networks of CONSA partners and assess trial implementation. Outcomes will be evaluated from data collected using a shared patient registry. Standardized trial procedures will be implemented among designated birth populations in 7 African countries whose programs met eligibility criteria. Treatment protocol includes administering antibacterial and antimalarial prophylaxis and standard childhood vaccinations against infections commonly affecting children with SCD. Infants with a positive screen and confirmation of SCD within the catchment areas defined by each consortium partner will be enrolled in the clinical intervention protocol and followed regularly until age of 5 years. Effectiveness of these early interventions, along with culturally appropriate family education and counseling, will be evaluated by comparing U5M in the enrolled cohort to estimated preprogram data. Here, we describe the methodology planned for this trial.


Assuntos
Anemia Falciforme , Triagem Neonatal , Lactente , Criança , Recém-Nascido , Humanos , Pré-Escolar , Triagem Neonatal/métodos , Anemia Falciforme/diagnóstico , Anemia Falciforme/epidemiologia , Anemia Falciforme/complicações , África Subsaariana/epidemiologia , Incidência
13.
Nat Commun ; 12(1): 269, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431834

RESUMO

Chemical matter is needed to target the divergent biology associated with the different life cycle stages of Plasmodium. Here, we report the parallel de novo screening of the Medicines for Malaria Venture (MMV) Pandemic Response Box against Plasmodium asexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. Unique chemotypes were identified with both multistage activity or stage-specific activity, including structurally diverse gametocyte-targeted compounds with potent transmission-blocking activity, such as the JmjC inhibitor ML324 and the antitubercular clinical candidate SQ109. Mechanistic investigations prove that ML324 prevents histone demethylation, resulting in aberrant gene expression and death in gametocytes. Moreover, the selection of parasites resistant to SQ109 implicates the druggable V-type H+-ATPase for the reduced sensitivity. Our data therefore provides an expansive dataset of compounds that could be redirected for antimalarial development and also point towards proteins that can be targeted in multiple parasite life cycle stages.


Assuntos
Antimaláricos/uso terapêutico , Descoberta de Drogas , Malária/tratamento farmacológico , Malária/transmissão , Pandemias , Aedes/parasitologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Análise por Conglomerados , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária/epidemiologia , Masculino , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento
14.
J Med Chem ; 64(4): 2291-2309, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33573376

RESUMO

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (<50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Compostos de Espiro/farmacologia , Animais , Anopheles/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/metabolismo , Feminino , Células Germinativas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ratos , Compostos de Espiro/síntese química , Compostos de Espiro/metabolismo , Relação Estrutura-Atividade
15.
BMC Bioinformatics ; 11: 151, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20334658

RESUMO

BACKGROUND: Sequence alignments form part of many investigations in molecular biology, including the determination of phylogenetic relationships, the prediction of protein structure and function, and the measurement of evolutionary rates. However, to obtain meaningful results, a significant degree of sequence similarity is required to ensure that the alignments are accurate and the inferences correct. Limitations arise when sequence similarity is low, which is particularly problematic when working with fast-evolving genes, evolutionary distant taxa, genomes with nucleotide biases, and cases of convergent evolution. RESULTS: A novel approach was conceptualized to address the "low sequence similarity" alignment problem. We developed an alignment algorithm termed FIRE (Functional Inference using the Rates of Evolution), which aligns sequences using the evolutionary rate at codon sites, as measured by the dN/dS ratio, rather than nucleotide or amino acid residues. FIRE was used to test the hypotheses that evolutionary rates can be used to align sequences and that the alignments may be used to infer protein domain function. Using a range of test data, we found that aligning domains based on evolutionary rates was possible even when sequence similarity was very low (for example, antibody variable regions). Furthermore, the alignment has the potential to infer protein domain function, indicating that domains with similar functions are subject to similar evolutionary constraints. These data suggest that an evolutionary rate-based approach to sequence analysis (particularly when combined with structural data) may be used to study cases of convergent evolution or when sequences have very low similarity. However, when aligning homologous gene sets with sequence similarity, FIRE did not perform as well as the best traditional alignment algorithms indicating that the conventional approach of aligning residues as opposed to evolutionary rates remains the method of choice in these cases. CONCLUSIONS: FIRE provides proof of concept that it is possible to align sequences and infer domain function by using evolutionary rates rather than residue similarity. This represents a new approach to sequence analysis with a wide range of potential applications in molecular biology.


Assuntos
Códon/química , Evolução Molecular , Estrutura Terciária de Proteína , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Sequência de Bases , Bases de Dados de Proteínas
16.
J Med Chem ; 62(2): 1022-1035, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30562027

RESUMO

Structure-activity relationship studies involving N-aryl-3-trifluoromethyl pyrido[1,2- a]benzimidazoles (PBI) identified several compounds possessing potent in vitro activities against the asexual blood, liver, and gametocyte stages of the Plasmodium parasite with no cross-resistance to chloroquine. Frontrunner lead compounds with good in vitro absorption, distribution, metabolism, and excretion (ADME) profiles were subjected to in vivo proof-of-concept studies in NMRI mice harboring the rodent P. berghei infection. This led to the identification of compounds 10 and 49, effecting 98% and 99.93% reduction in parasitemia with mean survival days of 12 and 14, respectively, at an oral dose of 4 × 50 mg/kg. In vivo pharmacokinetics studies on 10 revealed slow absorption, low volume of distribution, and low clearance profiles. Furthermore, this series displayed a low propensity to inhibit the human ether-a-go-go-related gene (hERG) potassium ion channel whose inhibition is associated with cardiotoxicity.


Assuntos
Antimaláricos/uso terapêutico , Benzimidazóis/química , Malária/tratamento farmacológico , Plasmodium/fisiologia , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Modelos Animais de Doenças , Desenho de Fármacos , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Meia-Vida , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/mortalidade , Malária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium/efeitos dos fármacos , Relação Estrutura-Atividade , Taxa de Sobrevida
17.
ACS Infect Dis ; 5(2): 303-315, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30525439

RESUMO

A drug repositioning approach was leveraged to derivatize astemizole (AST), an antihistamine drug whose antimalarial activity was previously identified in a high-throughput screen. The multistage activity potential against the Plasmodium parasite's life cycle of the subsequent analogues was examined by evaluating against the parasite asexual blood, liver, and sexual gametocytic stages. In addition, the previously reported contribution of heme detoxification to the compound's mode of action was interrogated. Ten of the 17 derivatives showed half-maximal inhibitory concentrations (IC50s) of <0.1 µM against the chloroquine (CQ)-sensitive Plasmodium falciparum NF54 ( PfNF54) strain while maintaining submicromolar potency against the multidrug-resistant strain, PfK1, with most showing low likelihood of cross-resistance with CQ. Selected analogues ( PfNF54-IC50 < 0.1 µM) were tested for cytotoxicity on Chinese hamster ovarian (CHO) cells and found to be highly selective (selectivity index > 100). Screening of AST and its analogues against gametocytes revealed their moderate activity (IC50: 1-5 µM) against late stage P. falciparum gametocytes, while the evaluation of activity against P. berghei liver stages identified one compound (3) with 3-fold greater activity than the parent AST compound. Mechanistic studies showed a strong correlation between in vitro inhibition of ß-hematin formation by the AST derivatives and their antiplasmodium IC50s. Analyses of intracellular inhibition of hemozoin formation within the parasite further yielded signatures attributable to a possible perturbation of the heme detoxification machinery.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Astemizol/análogos & derivados , Hemeproteínas/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Animais , Células CHO , Cloroquina/farmacologia , Cricetulus , Reposicionamento de Medicamentos , Resistência a Múltiplos Medicamentos , Concentração Inibidora 50 , Estágios do Ciclo de Vida
18.
Trends Parasitol ; 24(1): 18-23, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18037345

RESUMO

Defining the molecular intricacies of malaria pathogenesis is a vital area of medical and scientific research. Sophisticated methods have been developed to identify and characterise host-parasite interactions that are important in infection. Phage display involves the combinatorial display of proteins or peptides on the surface of bacteriophage. The technology provides an invaluable tool for screening diverse libraries for polypeptides that have a high affinity for a given target. Phage display in malaria research has proven successful, not only in mapping the protein-protein interactions that are important in Plasmodium biology, but also in the identification of molecules that might be exploited in the design of therapeutic agents or vaccines.


Assuntos
Malária/parasitologia , Parasitologia/métodos , Biblioteca de Peptídeos , Plasmodium/fisiologia , Animais , Anopheles/fisiologia , Eritrócitos/fisiologia , Humanos , Fígado/fisiologia , Parasitologia/normas , Plasmodium/genética
19.
Biochem Biophys Res Commun ; 376(3): 489-93, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18793615

RESUMO

Plasmodium falciparum uses multiple host receptors to attach and invade human erythrocytes. Glycophorins have been implicated as receptors for parasite invasion in human erythrocytes. Here, we screened a phage display cDNA library of P. falciparum (FCR3, a sialic acid-dependent strain) using purified glycophorins and erythrocytes as bait. Several phage clones were identified that bound to immobilized glycophorins and contained the same 74 bp insert encoding the 7-amino acids sequence ETTLKSF. A similar screen using intact human erythrocytes in solution identified additional phage clones containing the same 7-amino acids sequence. Using ELISA and immunofluorescence, direct binding of ETTLKSF peptide to glycophorins and erythrocytes was confirmed. Pull-down and protease treatment assays suggest that ETTLKSF peptide specifically interacts with glycophorin C. The synthetic ETTLKSF peptide partially blocks merozoite invasion in human erythrocytes. Further characterization of ETTLKSF peptide could lead to the development of a novel class of inhibitors against the blood stage malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/parasitologia , Oligopeptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/farmacologia , Sequência de Aminoácidos , Animais , Antimaláricos/química , Antimaláricos/isolamento & purificação , Células Cultivadas , Eritrócitos/parasitologia , Glicoforinas/química , Humanos , Malária Falciparum/sangue , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/isolamento & purificação , Biblioteca de Peptídeos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação
20.
Malar J ; 7: 161, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18721457

RESUMO

BACKGROUND: During erythrocytic schizogony, Plasmodium falciparum interacts with the human erythrocyte membrane when it enters into, grows within and escapes from the erythrocyte. An interaction between the P. falciparum M18 aspartyl aminopeptidase (PfM18AAP) and the human erythrocyte membrane protein spectrin was recently identified using phage display technology. In this study, recombinant (r) PfM18AAP was characterized and the interaction between the enzyme and spectrin, as well as other erythrocyte membrane proteins, analyzed. METHODS: rPfM18AAP was produced as a hexahistidine-fusion protein in Escherichia coli and purified using magnetic bead technology. The pI of the enzyme was determined by two-dimensional gel electrophoresis and the number of subunits in the native enzyme was estimated from Ferguson plots. The enzymatic activity over a pH and temperature range was tested by a coupled enzyme assay. Blot overlays were performed to validate the spectrin-PfM18AAP interaction, as well as identify additional interactions between the enzyme and other erythrocyte membrane proteins. Sequence analysis identified conserved amino acids that are expected to be involved in cofactor binding, substrate cleavage and quaternary structure stabilization. RESULTS: rPfM18AAP has a molecular weight of ~67 kDa and the enzyme separated as three entities with pI 6.6, 6.7 and 6.9. Non-denaturing gel electrophoresis indicated that rPfM18AAP aggregated into oligomers. An in vitro coupled enzyme assay showed that rPfM18AAP cleaved an N-terminal aspartate from a tripeptide substrate with maximum enzymatic activity at pH 7.5 and 37 degrees C. The spectrin-binding region of PfM18AAP is not found in Homo sapiens, Saccharomyces cerevisiae and otherPlasmodium species homologues. Amino acids expected to be involved in cofactor binding, substrate cleavage and quaternary structure stabilization, are conserved. Blot overlays with rPfM18AAP against spectrin and erythrocyte membrane proteins indicated that rPfM18AAP binds to spectrin, as well as to protein 4.1, protein 4.2, actin and glyceraldehyde 3-phosphate dehydrogenase. CONCLUSION: Studies characterizing rPfM18AAP showed that this enzyme interacts with erythrocyte spectrin and other membrane proteins. This suggests that, in addition to its proposed role in hemoglobin digestion, PfM18AAP performs other functions in the erythrocyte host and can utilize several substrates, which highlights the multifunctional role of malaria enzymes.


Assuntos
Glutamil Aminopeptidase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Espectrina/metabolismo , Animais , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Glutamil Aminopeptidase/química , Humanos , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Peso Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA