RESUMO
BACKGROUND: Students with developed self-regulated learning (SRL) skills demonstrate an ability to set individualized educational goals, select optimal learning strategies for reaching these goals, and reflect on overall progress. The primary aims of this study were to investigate first-year medical students' perceived utility of a self-regulated learning-informed intervention and to assess the impact of its implementation on students' intended use of SRL throughout medical school. METHODS: A two-part educational intervention focused on SRL skill development was carried out at Harvard Medical School during the start of the 2021 academic year. For the first component of the intervention, 169 first-year medical students engaged in an interactive class session structured around SRL concept videos, a brief lecture, small group discussions and individual reflection. Students completed pre- and post-intervention surveys which inquired about learners' current and anticipated application of SRL skills. During the second component of the intervention, 15 first-year medical students participated in a set of one-on-one academic SRL coaching sessions. All coaching participants completed follow-up semi-structured interviews. RESULTS: A statistically significant increase was observed between students' use of skills in all domains of self-regulated learning prior to the intervention and their anticipated use of these skills following the intervention. Prior to the intervention, 60.1% (n = 92) of students reported utilizing evidence-based learning strategies, compared to 92.8% (n = 142) of students (p < 0.001) who anticipated applying this SRL skills at the completion of the classroom session. Six core themes emerged from qualitative analysis of the post-intervention survey including learning plan development, accountability and progress tracking, goals for growth, engagement through active learning, routine reflection, and adapting to the curriculum. CONCLUSIONS: Both classroom-based learning sessions and one-on-one academic coaching programs are feasible approaches for encouraging the use of self-regulated learning techniques in the preclinical setting.
Assuntos
Tutoria , Estudantes de Medicina , Humanos , Faculdades de Medicina , Aprendizagem , Aprendizagem Baseada em ProblemasRESUMO
Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.
Assuntos
Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/parasitologia , Animais , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/metabolismo , Toxoplasma/citologia , Toxoplasmose/imunologia , Toxoplasmose/patologia , Vacúolos/parasitologiaRESUMO
BACKGROUND: Next generation sequencing is helping to overcome limitations in organisms less accessible to classical or reverse genetic methods by facilitating whole genome mutational analysis studies. One traditionally intractable group, the Apicomplexa, contains several important pathogenic protozoan parasites, including the Plasmodium species that cause malaria.Here we apply whole genome analysis methods to the relatively accessible model apicomplexan, Toxoplasma gondii, to optimize forward genetic methods for chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) and ethylmethane sulfonate (EMS) at varying dosages. RESULTS: By comparing three different lab-strains we show that spontaneously generated mutations reflect genome composition, without nucleotide bias. However, the single nucleotide variations (SNVs) are not distributed randomly over the genome; most of these mutations reside either in non-coding sequence or are silent with respect to protein coding. This is in contrast to the random genomic distribution of mutations induced by chemical mutagenesis. Additionally, we report a genome wide transition vs transversion ratio (ti/tv) of 0.91 for spontaneous mutations in Toxoplasma, with a slightly higher rate of 1.20 and 1.06 for variants induced by ENU and EMS respectively. We also show that in the Toxoplasma system, surprisingly, both ENU and EMS have a proclivity for inducing mutations at A/T base pairs (78.6% and 69.6%, respectively). CONCLUSIONS: The number of SNVs between related laboratory strains is relatively low and managed by purifying selection away from changes to amino acid sequence. From an experimental mutagenesis point of view, both ENU (24.7%) and EMS (29.1%) are more likely to generate variation within exons than would naturally accumulate over time in culture (19.1%), demonstrating the utility of these approaches for yielding proportionally greater changes to the amino acid sequence. These results will not only direct the methods of future chemical mutagenesis in Toxoplasma, but also aid in designing forward genetic approaches in less accessible pathogenic protozoa as well.
Assuntos
Genoma , Toxoplasma/genética , Adenosina/genética , Adenosina/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Linhagem Celular , Metanossulfonato de Etila/toxicidade , Etilnitrosoureia/toxicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fenótipo , Mutação Puntual , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Timidina/genética , Timidina/metabolismo , Toxoplasma/efeitos dos fármacosRESUMO
Toxoplasma gondii is a polarized cell concentrating several secretory organelles at the apical pole. The secretory micronemes come in two sub-populations differentiated by dependence on Rab5A/C in their biogenesis. Calcium-dependent exocytosis of micronemes occurs at the very apical tip and is critical for parasite egress from its host cell, adhesion and invasion of the next cell. Ferlins represent a protein family with roles in exocytosis containing multiple Ca2+-sensing C2 domains. We determined that T. gondii's ferlin 1 (FER1) localized dynamically to the parasite's secretory pathway. FER1 function was dissected by dominant negative overexpression strategies. We demonstrated that FER1 traffics microneme organelles along the following trajectories: (1) Along the cortex to the apical end; (2) To the apical tip for fusion with the plasma membrane; (3) Differential microneme sub-population traffic, and that FER1 could putatively be responsible for microneme protein trafficking. (4) From the trans-Golgi-endosomal network to the subpellicular cortex; (5) Retrograde transport allowing microneme recycling from mother to daughter. Finally, FER1 overexpression triggers a microneme exocytosis burst, supporting the notion that the radially organized micronemes at the apical tip comprise a readily-releasable microneme pool. In summary, FER1 is pivotal for dynamic microneme trafficking, acts differently on the two microneme subpopulations, and acts on the plasma membrane fusion step during microneme exocytosis.
Assuntos
Exocitose , Transporte Proteico , Proteínas de Protozoários , Toxoplasma , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Organelas/metabolismo , Humanos , Membrana Celular/metabolismoRESUMO
The Plasmodium RhopH complex is a high molecular weight antigenic complex consisting of three subunits - RhopH1/clag, RhopH2 and RhopH3 - located in the rhoptry secretory organelles of the invasive merozoite. In Plasmodium falciparum RhopH1/clag is encoded by one of five clag genes. Two highly similar paralogous genes, clag 3.1 and clag 3.2, are mutually exclusively expressed. Here we show clonal switching from the clag 3.2 to the clag 3.1 paralogue in vitro. Chromatin immunoprecitation studies suggest that silencing of either clag 3 paralogue is associated with the enrichment of specific histone modifications associated with heterochromatin. We were able to disrupt the clag 3.2 gene, with a drug cassette inserted into the clag 3.2 locus being readily silenced in a position-dependent and sequence-independent manner. Activation of this drug cassette by drug selection results in parasites with the clag 3.1 locus silenced and lack full-length clag 3.1 or 3.2 transcripts. These clag 3-null parasites demonstrate a significant growth inhibition compared with wild-type parasites, providing the first genetic evidence for a role for these proteins in efficient parasite proliferation. Epigenetic regulation of these chromosomally proximal members of a multigene family provides a mechanism for both immune evasion and functional diversification.
Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Proteínas de Protozoários/biossíntese , Imunoprecipitação da Cromatina , Técnicas de Inativação de Genes , Mutagênese Insercional , Proteínas de Protozoários/genéticaRESUMO
Like their human hosts, Plasmodium falciparum parasites rely on the ubiquitin-proteasome system for survival. We previously identified PfUCHL3, a deubiquitinating enzyme, and here we characterize its activity and changes in active site architecture upon binding to ubiquitin. We find strong evidence that PfUCHL3 is essential to parasite survival. The crystal structures of both PfUCHL3 alone and in complex with the ubiquitin-based suicide substrate UbVME suggest a rather rigid active site crossover loop that likely plays a role in restricting the size of ubiquitin adduct substrates. Molecular dynamics simulations of the structures and a model of the PfUCHL3-PfNedd8 complex allowed the identification of shared key interactions of ubiquitin and PfNedd8 with PfUCHL3, explaining the dual specificity of this enzyme. Distinct differences observed in ubiquitin binding between PfUCHL3 and its human counterpart make it likely that the parasitic DUB can be selectively targeted while leaving the human enzyme unaffected.
Assuntos
Hidrolases/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Ubiquitina/química , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases , Humanos , Simulação de Dinâmica Molecular , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Ubiquitina TiolesteraseRESUMO
The pathogenesis of Plasmodium falciparum depends on efficient invasion into host erythrocytes. Parasite ligands encoded by multi-gene families interact with erythrocyte receptors. P. falciparum reticulocyte binding protein homologues (PfRhs) are expressed at the apical surface of invasive merozoites and have divergent ectodomains that are postulated to bind different erythrocyte receptors. Variant expression of these paralogues results in the use of alternative invasion pathways. Two PfRh proteins, PfRh2a and PfRh2b, are identical for 2700 N-terminal amino acids and differ only in a C-terminal 500 amino acid region, which includes a unique ectodomain, transmembrane domain and cytoplasmic domain. Despite their similarity, PfRh2b is required for a well-defined invasion pathway while PfRh2a is not required or sufficient for this pathway. Mapping the genomic region encoding these proteins revealed a recombinogenic locus with PfRh2a and PfRh2b in a head-to-head orientation. We have generated viable PfRh2a/2b chimeric parasites to identify the regions required for alternative invasion pathway utilization. We find that the differential ability to use these pathways is conferred by the cytoplasmic domains of PfRh2a and PfRh2b, not the ectodomain or transmembrane regions. Our results highlight the importance of the cytoplasmic domain for functional diversification of a major adhesive ligand family in malaria parasites.
Assuntos
Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/parasitologia , Ligantes , Malária/parasitologia , Merozoítos/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Recombinação GenéticaRESUMO
This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC50s], 200 to 285 nM) and inhibits P. berghei in vivo with an efficacy of > 99% in an adapted version of Peters' 4-day suppressive test (W. Peters, Ann. Trop. Med. Parasitol. 69:155-171, 1975). Genz-644442 became the focus of medicinal chemistry optimization; 321 analogs were synthesized and were tested for in vitro potency against P. falciparum and for in vitro absorption, distribution, metabolism, and excretion (ADME) properties. This yielded compounds with IC50s of approximately 30 nM. The lead compound, Genz-668764, has been characterized in more detail. It is a single enantiomer with IC50s of 28 to 65 nM against P. falciparum in vitro. In the 4-day P. berghei model, when it was dosed at 100 mg/kg of body weight/day, no parasites were detected on day 4 postinfection. However, parasites recrudesced by day 9. Dosing at 200 mg/kg/day twice a day resulted in cures of 3/5 animals. The compound had comparable activity against P. falciparum blood stages in a human-engrafted NOD-scid mouse model. Genz-668764 had a terminal half-life of 2.8 h and plasma trough levels of 41 ng/ml when it was dosed twice a day orally at 55 mg/kg/day. Seven-day rat safety studies showed a no-observable-adverse-effect level (NOAEL) at 200 mg/kg/day; the compound was not mutagenic in Ames tests, did not inhibit the hERG channel, and did not have potent activity against a broad panel of receptors and enzymes. Employing allometric scaling and using in vitro ADME data, the predicted human minimum efficacious dose of Genz-668764 in a 3-day once-daily dosing regimen was 421 mg/day/70 kg, which would maintain plasma trough levels above the IC90 against P. falciparum for at least 96 h after the last dose. The predicted human therapeutic index was approximately 3, on the basis of the exposure in rats at the NOAEL. We were unable to select for parasites with >2-fold decreased sensitivity to the parent compound, Genz-644442, over 270 days of in vitro culture under drug pressure. These characteristics make Genz-668764 a good candidate for preclinical development.
Assuntos
Antimaláricos/farmacologia , Indóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Cães , Feminino , Humanos , Indóis/farmacocinética , Masculino , Camundongos , Plasmodium berghei/efeitos dos fármacos , RatosRESUMO
While quantitative analytical skills have always been a part of modern biomedical training, the big data revolution and digital research environment have increased the importance of computational approaches for biomedical graduate education. To address this growing need, Ph.D. programs have explored ways to integrate quantitative training into their existing curricula. However, these attempts have been hindered by limitations on total instructional time, faculty perceptions, and scalability. Here, we describe a flipped approach that combined a preexisting online course with group problem solving sessions to effectively and efficiently teach biomedical Ph.D. students key concepts in the use of the Python programming language for research. Following the COVID-19 related shutdowns in March 2020, we successfully adapted this approach to an all-online version where the formerly in-person problem-solving sessions occurred in small groups over Zoom. We found that students in both in-person and remote flipped formats showed increased confidence using Python and related this to their thesis research. Following the shift to the fully remote format, the lack of a physically present instructor seemed to increase students' reliance on their classmates, which in turn promoted peer learning and support. This flexible, scalable approach to computational training may address the needs of many biomedical Ph.D. programs.
RESUMO
Plasmodium falciparum is the most virulent of the Plasmodium species infective to humans. Different P. falciparum strains vary in their dependence on erythrocyte receptors for invasion and their ability to switch in their utilization of different receptor repertoires. Members of the reticulocyte-binding protein-like (RBL) family of invasion ligands are postulated to play a central role in defining ligand-receptor interactions, known as invasion pathways. Here we report the targeted gene disruption of PfRh2b and PfRh2a in W2mef, a parasite strain that is heavily dependent on sialic-acid receptors for invasion, and show that the PfRh2b ligand is functional in this parasite background. Like the parental line, parasites lacking either PfRh2a or PfR2b can switch to a sialic acid-independent invasion pathway. However, both of the switched lines exhibit a reduced efficiency for invasion into sialic acid-depleted cells, suggesting a role for both PfRh2b and PfRh2a in invasion via sialic acid-independent receptors. We also find a strong selective pressure for the reconstitution of PfRh2b expression at the expense of PfRh2a. Our results reveal the importance of genetic background in ligand-receptor usage by P. falciparum parasites, and suggest that the co-ordinate expression of PfRh2a, PfRh2b together mediate efficient sialic acid-independent erythrocyte invasion.
Assuntos
Eritrócitos/parasitologia , Ácido N-Acetilneuramínico/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Marcação de Genes , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/metabolismoRESUMO
Infection with the apicomplexan parasite Plasmodium falciparum is associated with a high burden of morbidity and mortality across the developing world, yet the mechanisms of transcriptional control in this organism are poorly understood. While P. falciparum possesses many of the characteristics common to eukaryotic transcription, including much of the canonical machinery, it also demonstrates unique patterns of gene expression and possesses unusually AT-rich intergenic sequences. Importantly, several biological processes that are critical to parasite virulence involve highly regulated patterns of gene expression and silencing. The relative scarcity of transcription-associated proteins and specific cis-regulatory motifs recognized in the P. falciparum genome have been thought to reflect a reduced role for transcription factors in transcriptional control in these parasites. New approaches and technologies, however, have led to the discovery of many more of these elements, including an expanded family of DNA-binding proteins, and a re-assessment of this hypothesis is required. We review the current understanding of transcriptional control in P. falciparum, specifically highlighting promoter-driven and epigenetic mechanisms involved in the control of transcription initiation.
Assuntos
Regulação da Expressão Gênica , Inativação Gênica , Plasmodium falciparum/fisiologia , Transcrição Gênica , Animais , HumanosRESUMO
Invasion of host cells by apicomplexan parasites such as Toxoplasma gondii is critical for their infectivity and pathogenesis. In Toxoplasma, secretion of essential egress, motility, and invasion-related proteins from microneme organelles is regulated by oscillations of intracellular Ca2+ Later stages of invasion are considered Ca2+ independent, including the secretion of proteins required for host cell entry and remodeling from the parasite's rhoptries. We identified a family of three Toxoplasma proteins with homology to the ferlin family of double C2 domain-containing Ca2+ sensors. In humans and model organisms, such Ca2+ sensors orchestrate Ca2+-dependent exocytic membrane fusion with the plasma membrane. Here we focus on one ferlin that is conserved across the Apicomplexa, T. gondii FER2 (TgFER2). Unexpectedly, conditionally TgFER2-depleted parasites secreted their micronemes normally and were completely motile. However, these parasites were unable to invade host cells and were therefore not viable. Knockdown of TgFER2 prevented rhoptry secretion, and these parasites failed to form the moving junction at the parasite-host interface necessary for host cell invasion. Collectively, these data demonstrate the requirement of TgFER2 for rhoptry secretion in Toxoplasma tachyzoites and suggest a possible Ca2+ dependence of rhoptry secretion. These findings provide the first mechanistic insights into this critical yet poorly understood aspect of apicomplexan host cell invasion.IMPORTANCE Apicomplexan protozoan parasites, such as those causing malaria and toxoplasmosis, must invade the cells of their hosts in order to establish a pathogenic infection. Timely release of proteins from a series of apical organelles is required for invasion. Neither the vesicular fusion events that underlie secretion nor the observed reliance of the various processes on changes in intracellular calcium concentrations is completely understood. We identified a group of three proteins with strong homology to the calcium-sensing ferlin family, which are known to be involved in protein secretion in other organisms. Surprisingly, decreasing the amounts of one of these proteins (TgFER2) did not have any effect on the typically calcium-dependent steps in invasion. Instead, TgFER2 was essential for the release of proteins from organelles called rhoptries. These data provide a tantalizing first look at the mechanisms controlling the very poorly understood process of rhoptry secretion, which is essential for the parasite's infection cycle.
Assuntos
Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Linhagem Celular , Técnicas de Silenciamento de Genes , Genoma de Protozoário , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Toxoplasma/genéticaRESUMO
Paralogs of the widely prevalent phosphoglucomutase (PGM) protein called parafusin function in calcium (Ca2+)-mediated exocytosis across eukaryotes. In Toxoplasma gondii, the parafusin-related protein 1 (PRP1) has been associated with Ca2+-dependent microneme organelle secretion required for essential processes like host cell invasion and egress. Using reverse genetics, we observed PRP1 to be dispensable for completion of the lytic cycle, including host cell invasion and egress by the parasite. However, the absence of the gene affected increased microneme release triggered by A23187, a Ca2+ ionophore used to raise the cytoplasmic Ca2+ concentration mimicking the physiological role of Ca2+ during invasion and egress. The basal levels of constitutive microneme release in extracellular parasites and phosphatidic acid-triggered microneme secretion were unaffected in the mutant. The phenotype of the deletion mutant of the second PGM-encoding gene in Toxoplasma, PGM2, was similar to the phenotype of the PRP1 deletion mutant. Furthermore, the ability of the tachyzoites to induce acute infection in the mice remained normal in the absence of both PGM paralogs. Our data thus reveal that the microneme secretion upon high Ca2+ flux is facilitated by the Toxoplasma PGM paralogs, PRP1 and PGM2. However, this protein-mediated release is neither essential for lytic cycle completion nor for acute virulence of the parasite. IMPORTANCE Ca2+-dependent exocytosis is essential for the life cycle of apicomplexan parasites. Toxoplasma gondii harbors a phosphoglucomutase (PGM) ortholog, PRP1, previously associated with Ca2+-dependent microneme secretion. Here it is shown that genetic deletion of either PRP1, its PGM2 ortholog, or both genes is dispensable for the parasite's lytic cycle, including host cell egress and invasion. Depletion of the proteins abrogated high Ca2+-mediated microneme secretion induced by the ionophore A23187; however, the constitutive and phosphatidic acid-mediated release remained unaffected. Secretion mediated by the former pathway is not essential for tachyzoite survival or acute in vivo infection in the mice.
RESUMO
Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse-genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition, and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans.
Assuntos
Calcineurina/metabolismo , Adesão Celular , Plasmodium falciparum/enzimologia , Plasmodium falciparum/fisiologia , Toxoplasma/enzimologia , Toxoplasma/fisiologia , Eritrócitos/parasitologia , Fibroblastos/parasitologia , HumanosRESUMO
The asexual forms of the malaria parasite Plasmodium falciparum are adapted for chronic persistence in human red blood cells, continuously evading host immunity using epigenetically regulated antigenic variation of virulence-associated genes. Parasite survival on a population level also requires differentiation into sexual forms, an obligatory step for further human transmission. We reveal that the essential nuclear gene, P. falciparum histone deacetylase 2 (PfHda2), is a global silencer of virulence gene expression and controls the frequency of switching from the asexual cycle to sexual development. PfHda2 depletion leads to dysregulated expression of both virulence-associated var genes and PfAP2-g, a transcription factor controlling sexual conversion, and is accompanied by increases in gametocytogenesis. Mathematical modeling further indicates that PfHda2 has likely evolved to optimize the parasite's infectious period by achieving low frequencies of virulence gene expression switching and sexual conversion. This common regulation of cellular transcriptional programs mechanistically links parasite transmissibility and virulence.
Assuntos
Antígenos de Protozoários/imunologia , Histona Desacetilases/fisiologia , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/fisiologia , Sequência de Aminoácidos , Células Cultivadas , Epigênese Genética , Genes de Protozoários , Heterocromatina/genética , Heterocromatina/metabolismo , Interações Hospedeiro-Parasita , Humanos , Dados de Sequência Molecular , Plasmodium falciparum/citologia , Virulência/genéticaRESUMO
The widespread, obligate intracellular, protozoan parasite Toxoplasma gondii causes opportunistic disease in immuno-compromised patients and causes birth defects upon congenital infection. The lytic replication cycle is characterized by three stages: 1. active invasion of a nucleated host cell; 2. replication inside the host cell; 3. active egress from the host cell. The mechanism of egress is increasingly being appreciated as a unique, highly regulated process, which is still poorly understood at the molecular level. The signaling pathways underlying egress have been characterized through the use of pharmacological agents acting on different aspects of the pathways. As such, several independent triggers of egress have been identified which all converge on the release of intracellular Ca(2+), a signal that is also critical for host cell invasion. This insight informed a candidate gene approach which led to the identification of plant like calcium dependent protein kinase (CDPK) involved in egress. In addition, several recent breakthroughs in understanding egress have been made using (chemical) genetic approaches. To combine the wealth of pharmacological information with the increasing genetic accessibility of Toxoplasma we recently established a screen permitting the enrichment for parasite mutants with a defect in host cell egress. Although chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) or ethyl methanesulfonate (EMS) has been used for decades in the study of Toxoplasma biology, only recently has genetic mapping of mutations underlying the phenotypes become routine. Furthermore, by generating temperature-sensitive mutants, essential processes can be dissected and the underlying genes directly identified. These mutants behave as wild-type under the permissive temperature (35 °C), but fail to proliferate at the restrictive temperature (40 °C) as a result of the mutation in question. Here we illustrate a new phenotypic screening method to isolate mutants with a temperature-sensitive egress phenotype. The challenge for egress screens is to separate egressed from non-egressed parasites, which is complicated by fast re-invasion and general stickiness of the parasites to host cells. A previously established egress screen was based on a cumbersome series of biotinylation steps to separate intracellular from extracellular parasites. This method also did not generate conditional mutants resulting in weak phenotypes. The method described here overcomes the strong attachment of egressing parasites by including a glycan competitor, dextran sulfate (DS), that prevents parasites from sticking to the host cell. Moreover, extracellular parasites are specifically killed off by pyrrolidine dithiocarbamate (PDTC), which leaves intracellular parasites unharmed. Therefore, with a new phenotypic screen to specifically isolate parasite mutants with defects in induced egress, the power of genetics can now be fully deployed to unravel the molecular mechanisms underlying host cell egress.
Assuntos
Fibroblastos/parasitologia , Mutação , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Interações Hospedeiro-Parasita/fisiologia , Humanos , Toxoplasmose/parasitologiaRESUMO
Variation of surface adhesins, such as the Plasmodium falciparum erythrocyte invasion ligand PfRh4, is critical for virulence and immune evasion in many microbes. While phenotypic switching is linked to transcriptional changes and chromatin function, the determinants of switching frequency remain poorly defined. By expressing a prokaryotic DNA methylase in P. falciparum, we directly assayed accessibility of transcriptionally active and silent chromatin at the PfRh4 locus. Parasites selected for in vivo PfRh4 activation show a reversible increase in promoter accessibility and exhibit perinuclear repositioning of the locus from a silent to a conserved activation domain. Forced activation of a proximal gene results in a similar repositioning of the PfRh4 locus, with a concomitant increase in PfRh4 activation in a subpopulation of parasites and promoter accessibility correlating with actively transcribed loci. Thus, nuclear repositioning is associated with increased P. falciparum switching frequency, while promoter accessibility is tightly linked to clonally active PfRh4 promoters.
Assuntos
Proteínas de Membrana/genética , Plasmodium falciparum/patogenicidade , Regiões Promotoras Genéticas , Proteínas de Protozoários/genética , Transcrição Gênica , Fatores de Virulência/genética , Variação Antigênica , Núcleo Celular/metabolismo , Cromatina/metabolismo , Plasmodium falciparum/genéticaRESUMO
Here we report the discovery of tetracyclic benzothiazepines (BTZs) as highly potent and selective antimalarials along with the identification of the Plasmodium falciparum cytochrome bc(1) complex as the primary functional target of this novel compound class. Investigation of the structure activity relationship within this previously unexplored chemical scaffold has yielded inhibitors with low nanomolar activity. A combined approach employing genetically modified parasites, biochemical profiling, and resistance selection validated inhibition of cytochrome bc(1) activity, an essential component of the parasite respiratory chain and target of the widely used antimalarial drug atovaquone, as the mode of action of this novel compound class. Resistance to atovaquone is eroding the efficacy of this widely used antimalarial drug. Intriguingly, BTZ-based inhibitors retain activity against atovaquone resistant parasites, suggesting this chemical class may provide an alternative to atovaquone in combination therapy.
Assuntos
Antimaláricos/química , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Tiazepinas/química , Animais , Antimaláricos/síntese química , Antimaláricos/farmacologia , Atovaquona/química , Atovaquona/farmacologia , Sítios de Ligação , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Tiazepinas/síntese química , Tiazepinas/farmacologiaRESUMO
Although the cost of generating draft-quality genomic sequence continues to decline, refining that sequence by the process of "sequence finishing" remains expensive. Near-perfect finished sequence is an appropriate goal for the human genome and a small set of reference genomes; however, such a high-quality product cannot be cost-justified for large numbers of additional genomes, at least for the foreseeable future. Here we describe the generation and quality of an intermediate grade of finished genomic sequence (termed comparative-grade finished sequence), which is tailored for use in multispecies sequence comparisons. Our analyses indicate that this sequence is very high quality (with the residual gaps and errors mostly falling within repetitive elements) and reflects 99% of the total sequence. Importantly, comparative-grade sequence finishing requires approximately 40-fold less reagents and approximately 10-fold less personnel effort compared to the generation of near-perfect finished sequence, such as that produced for the human genome. Although applied here to finishing sequence derived from individual bacterial artificial chromosome (BAC) clones, one could envision establishing routines for refining sequences emanating from whole-genome shotgun sequencing projects to a similar quality level. Our experience to date demonstrates that comparative-grade sequence finishing represents a practical and affordable option for sequence refinement en route to comparative analyses.