Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Diabetologia ; 66(8): 1544-1556, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36988639

RESUMO

AIMS/HYPOTHESIS: TNF-α plays a role in pancreatic beta cell loss in type 1 diabetes mellitus. In clinical interventions, TNF-α inhibition preserves C-peptide levels in early type 1 diabetes. In this study we evaluated the crosstalk of TNF-α, as compared with type I IFNs, with the type 1 diabetes candidate gene PTPN2 (encoding protein tyrosine phosphatase non-receptor type 2 [PTPN2]) in human beta cells. METHODS: EndoC-ßH1 cells, dispersed human pancreatic islets or induced pluripotent stem cell (iPSC)-derived islet-like cells were transfected with siRNAs targeting various genes (siCTRL, siPTPN2, siJNK1, siJNK3 or siBIM). Cells were treated for 48 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was evaluated using Hoechst 33342 and propidium iodide staining. mRNA levels were assessed by quantitative reverse transcription PCR (qRT-PCR) and protein expression by immunoblot. RESULTS: PTPN2 silencing sensitised beta cells to cytotoxicity induced by IFN-α and/or TNF-α by 20-50%, depending on the human cell model utilised; there was no potentiation between the cytokines. We silenced c-Jun N-terminal kinase (JNK)1 or Bcl-2-like protein 2 (BIM), and this abolished the proapoptotic effects of IFN-α, TNF-α or the combination of both after PTPN2 inhibition. We further observed that PTPN2 silencing increased TNF-α-induced JNK1 and BIM phosphorylation and that JNK3 is necessary for beta cell resistance to IFN-α cytotoxicity. CONCLUSIONS/INTERPRETATION: We show that the type 1 diabetes candidate gene PTPN2 is a key regulator of the deleterious effects of TNF-α in human beta cells. It is conceivable that people with type 1 diabetes carrying risk-associated PTPN2 polymorphisms may particularly benefit from therapies inhibiting TNF-α.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/farmacologia , Citocinas/metabolismo , Morte Celular , Células Secretoras de Insulina/metabolismo , Interferon-alfa/farmacologia
2.
Proc Natl Acad Sci U S A ; 117(16): 9022-9031, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32284404

RESUMO

The vast majority of type 1 diabetes (T1D) genetic association signals lie in noncoding regions of the human genome. Many have been predicted to affect the expression and secondary structure of long noncoding RNAs (lncRNAs), but the contribution of these lncRNAs to the pathogenesis of T1D remains to be clarified. Here, we performed a complete functional characterization of a lncRNA that harbors a single nucleotide polymorphism (SNP) associated with T1D, namely, Lnc13 Human pancreatic islets harboring the T1D-associated SNP risk genotype in Lnc13 (rs917997*CC) showed higher STAT1 expression than islets harboring the heterozygous genotype (rs917997*CT). Up-regulation of Lnc13 in pancreatic ß-cells increased activation of the proinflammatory STAT1 pathway, which correlated with increased production of chemokines in an allele-specific manner. In a mirror image, Lnc13 gene disruption in ß-cells partially counteracts polyinosinic-polycytidylic acid (PIC)-induced STAT1 and proinflammatory chemokine expression. Furthermore, we observed that PIC, a viral mimetic, induces Lnc13 translocation from the nucleus to the cytoplasm promoting the interaction of STAT1 mRNA with (poly[rC] binding protein 2) (PCBP2). Interestingly, Lnc13-PCBP2 interaction regulates the stability of the STAT1 mRNA, sustaining inflammation in ß-cells in an allele-specific manner. Our results show that the T1D-associated Lnc13 may contribute to the pathogenesis of T1D by increasing pancreatic ß-cell inflammation. These findings provide information on the molecular mechanisms by which disease-associated SNPs in lncRNAs influence disease pathogenesis and open the door to the development of diagnostic and therapeutic approaches based on lncRNA targeting.


Assuntos
Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/imunologia , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT1/genética , Regiões 3' não Traduzidas/genética , Sobrevivência Celular/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/virologia , Predisposição Genética para Doença , Células HEK293 , Humanos , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/virologia , Células Jurkat , Poli I-C/imunologia , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , RNA Viral/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
3.
Diabetologia ; 61(3): 636-640, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29305625

RESUMO

AIMS/HYPOTHESIS: IFN-α, a cytokine expressed in human islets from individuals affected by type 1 diabetes, plays a key role in the pathogenesis of diabetes by upregulating inflammation, endoplasmic reticulum (ER) stress and MHC class I overexpression, three hallmarks of islet histology in early type 1 diabetes. We tested whether expression of these mediators of beta cell loss is reversible upon IFN-α withdrawal or IFN-α pathway inhibition. METHODS: IFN-α-induced MHC class I overexpression, ER stress and inflammation were evaluated by flow cytometry, immunofluorescence and real-time PCR in human EndoC-ßH1 cells or human islets exposed to IFN-α with or without the presence of Janus kinase (JAK) inhibitors. Protein expression was evaluated by western blot. RESULTS: IFN-α-induced expression of inflammatory and ER stress markers returned to baseline after 24-48 h following cytokine removal. In contrast, MHC class I overexpression at the cell surface persisted for at least 7 days. Treatment with JAK inhibitors, when added with IFN-α, prevented MHC class I overexpression, but when added 24 h after IFN-α exposure these inhibitors failed to accelerate MHC class I return to baseline. CONCLUSIONS/INTERPRETATION: IFN-α mediates a long-lasting and preferential MHC class I overexpression in human beta cells, which is not affected by the subsequent addition of JAK inhibitors. These observations suggest that IFN-α-stimulated long-lasting MHC class I expression may amplify beta cell antigen presentation during the early phase of type 1 diabetes and that IFN-α inhibitors might need to be used at very early stages of the disease to be effective.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interferon-alfa/farmacologia , Western Blotting , Linhagem Celular , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Nitrilas , Pirazóis/farmacologia , Pirimidinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Sulfonas/farmacologia
4.
PLoS Genet ; 9(5): e1003532, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23737756

RESUMO

Mutations in human Gli-similar (GLIS) 3 protein cause neonatal diabetes. The GLIS3 gene region has also been identified as a susceptibility risk locus for both type 1 and type 2 diabetes. GLIS3 plays a role in the generation of pancreatic beta cells and in insulin gene expression, but there is no information on the role of this gene on beta cell viability and/or susceptibility to immune- and metabolic-induced stress. GLIS3 knockdown (KD) in INS-1E cells, primary FACS-purified rat beta cells, and human islet cells decreased expression of MafA, Ins2, and Glut2 and inhibited glucose oxidation and insulin secretion, confirming the role of this transcription factor for the beta cell differentiated phenotype. GLIS3 KD increased beta cell apoptosis basally and sensitized the cells to death induced by pro-inflammatory cytokines (interleukin 1ß + interferon-γ) or palmitate, agents that may contribute to beta cell loss in respectively type 1 and 2 diabetes. The increased cell death was due to activation of the intrinsic (mitochondrial) pathway of apoptosis, as indicated by cytochrome c release to the cytosol, Bax translocation to the mitochondria and activation of caspases 9 and 3. Analysis of the pathways implicated in beta cell apoptosis following GLIS3 KD indicated modulation of alternative splicing of the pro-apoptotic BH3-only protein Bim, favouring expression of the pro-death variant BimS via inhibition of the splicing factor SRp55. KD of Bim abrogated the pro-apoptotic effect of GLIS3 loss of function alone or in combination with cytokines or palmitate. The present data suggest that altered expression of the candidate gene GLIS3 may contribute to both type 1 and 2 type diabetes by favouring beta cell apoptosis. This is mediated by alternative splicing of the pro-apoptotic protein Bim and exacerbated formation of the most pro-apoptotic variant BimS.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Idoso , Processamento Alternativo/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Proteínas de Ligação a DNA , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 2/etiologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Proteínas Repressoras , Transativadores
5.
PLoS Genet ; 8(3): e1002552, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412385

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic beta cells are killed by infiltrating immune cells and by cytokines released by these cells. Signaling events occurring in the pancreatic beta cells are decisive for their survival or death in diabetes. We have used RNA sequencing (RNA-seq) to identify transcripts, including splice variants, expressed in human islets of Langerhans under control conditions or following exposure to the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and interferon-γ (IFN-γ). Based on this unique dataset, we examined whether putative candidate genes for T1D, previously identified by GWAS, are expressed in human islets. A total of 29,776 transcripts were identified as expressed in human islets. Expression of around 20% of these transcripts was modified by pro-inflammatory cytokines, including apoptosis- and inflammation-related genes. Chemokines were among the transcripts most modified by cytokines, a finding confirmed at the protein level by ELISA. Interestingly, 35% of the genes expressed in human islets undergo alternative splicing as annotated in RefSeq, and cytokines caused substantial changes in spliced transcripts. Nova1, previously considered a brain-specific regulator of mRNA splicing, is expressed in islets and its knockdown modified splicing. 25/41 of the candidate genes for T1D are expressed in islets, and cytokines modified expression of several of these transcripts. The present study doubles the number of known genes expressed in human islets and shows that cytokines modify alternative splicing in human islet cells. Importantly, it indicates that more than half of the known T1D candidate genes are expressed in human islets. This, and the production of a large number of chemokines and cytokines by cytokine-exposed islets, reinforces the concept of a dialog between pancreatic islets and the immune system in T1D. This dialog is modulated by candidate genes for the disease at both the immune system and beta cell level.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Interferon gama , Interleucina-1beta , Ilhotas Pancreáticas , Transdução de Sinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo/genética , Animais , Apoptose , Linhagem Celular , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Sistema Imunitário , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Ratos Wistar , Análise de Sequência de RNA , Transcriptoma/genética
6.
PLoS Pathog ; 7(9): e1002267, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21977009

RESUMO

The rise in type 1 diabetes (T1D) incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA) and a diabetogenic enterovirus (Coxsackievirus B5). Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR) promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1). Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular , Sobrevivência Celular , Infecções por Coxsackievirus/patologia , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/virologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/virologia , Masculino , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosforilação , Ratos , Ratos Wistar
7.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745505

RESUMO

Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but its effect on the repertoire of HLA Class I (HLA-I)-bound peptides presented by pancreatic ß-cells is unknown. Using immunopeptidomics, we characterized the peptide/HLA-I presentation in in-vitro resting and IFN-α-exposed ß-cells. IFN-α increased HLA-I expression and peptide presentation, including neo-sequences derived from alternative mRNA splicing, post-translational modifications - notably glutathionylation - and protein cis-splicing. This antigenic landscape relied on processing by both the constitutive and immune proteasome. The resting ß-cell immunopeptidome was dominated by HLA-A-restricted ligands. However, IFN-α only marginally upregulated HLA-A and largely favored HLA-B, translating into a major increase in HLA-B-restricted peptides and into an increased activation of HLA-B-restricted vs. HLA-A-restricted CD8+ T-cells. A preferential HLA-B hyper-expression was also observed in the islets of T1D vs. non-diabetic donors, and we identified islet-infiltrating CD8+ T-cells from T1D donors reactive to HLA-B-restricted granule peptides. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward epitopes presented by HLA-B, hence recruiting a distinct T-cell repertoire that may be relevant to T1D pathogenesis.

8.
J Biol Chem ; 286(2): 929-41, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20980260

RESUMO

Cytokines produced by islet-infiltrating immune cells induce ß-cell apoptosis in type 1 diabetes. The IFN-γ-regulated transcription factors STAT1/IRF-1 have apparently divergent effects on ß-cells. Thus, STAT1 promotes apoptosis and inflammation, whereas IRF-1 down-regulates inflammatory mediators. To understand the molecular basis for these differential outcomes within a single signal transduction pathway, we presently characterized the gene networks regulated by STAT1 and IRF-1 in ß-cells. This was done by using siRNA approaches coupled to microarray analysis of insulin-producing cells exposed or not to IL-1ß and IFN-γ. Relevant microarray findings were further studied in INS-1E cells and primary rat ß-cells. STAT1, but not IRF-1, mediates the cytokine-induced loss of the differentiated ß-cell phenotype, as indicated by decreased insulin, Pdx1, MafA, and Glut2. Furthermore, STAT1 regulates cytokine-induced apoptosis via up-regulation of the proapoptotic protein DP5. STAT1 and IRF-1 have opposite effects on cytokine-induced chemokine production, with IRF-1 exerting negative feedback inhibition on STAT1 and downstream chemokine expression. The present study elucidates the transcriptional networks through which the IFN-γ/STAT1/IRF-1 axis controls ß-cell function/differentiation, demise, and islet inflammation.


Assuntos
Apoptose/imunologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Pancreatite/imunologia , Pancreatite/patologia , Fator de Transcrição STAT1/imunologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Retroalimentação Fisiológica/fisiologia , Técnicas de Silenciamento de Genes , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-1beta/farmacologia , Masculino , Neuropeptídeos/genética , Neuropeptídeos/imunologia , RNA Interferente Pequeno , Ratos , Ratos Wistar , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transcrição Gênica/imunologia
9.
Hum Mol Genet ; 19(1): 135-46, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19825843

RESUMO

beta-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a 'dialog' between beta-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects beta-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic beta-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat beta-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic-polycitidilic acid-PIC). Real-time RT-PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary beta-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify beta-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate beta-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic beta-cell level.


Assuntos
RNA Helicases DEAD-box/metabolismo , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/genética , Células Secretoras de Insulina/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , RNA de Cadeia Dupla/farmacologia , Vírus/metabolismo , Animais , Apoptose/efeitos dos fármacos , Quimiocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Interferon beta/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , NF-kappa B/metabolismo , Poli I-C/farmacologia , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar
10.
Noncoding RNA ; 8(5)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287121

RESUMO

Circular RNAs (circRNAs) have recently been implicated in impaired ß-cell function in diabetes. Using microarray-based profiling of circRNAs in human EndoC-ßH1 cells treated with pro-inflammatory cytokines, this study aimed to investigate the expression and possible regulatory roles of circRNAs in human ß cells. We identified ~5000 ß-cell-expressed circRNAs, of which 84 were differentially expressed (DE) after cytokine exposure. Pathway analysis of the host genes of the DE circRNAs revealed the enrichment of cytokine signaling pathways, indicative of circRNA transcription from inflammatory genes in response to cytokines. Multiple binding sites for ß-cell-enriched microRNAs and RNA-binding proteins were observed for the highly upregulated circRNAs, supporting their function as 'sponges' or 'decoys'. We also present evidence for circRNA sequence conservation in multiple species, the presence of cytokine-induced regulatory elements, and putative protein-coding potential for the DE circRNAs. This study highlights the complex regulatory potential of circRNAs, which may play a crucial role during immune-mediated ß-cell destruction in type 1 diabetes.

11.
Front Immunol ; 12: 748679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721418

RESUMO

To circumvent the limitations of available preclinical models for the study of type 1 diabetes (T1D), we developed a new humanized model, the YES-RIP-hB7.1 mouse. This mouse is deficient of murine major histocompatibility complex class I and class II, the murine insulin genes, and expresses as transgenes the HLA-A*02:01 allele, the diabetes high-susceptibility HLA-DQ8A and B alleles, the human insulin gene, and the human co-stimulatory molecule B7.1 in insulin-secreting cells. It develops spontaneous T1D along with CD4+ and CD8+ T-cell responses to human preproinsulin epitopes. Most of the responses identified in these mice were validated in T1D patients. This model is amenable to characterization of hPPI-specific epitopes involved in T1D and to the identification of factors that may trigger autoimmune response to insulin-secreting cells in human T1D. It will allow evaluating peptide-based immunotherapy that may directly apply to T1D in human and complete preclinical model availability to address the issue of clinical heterogeneity of human disease.


Assuntos
Antígeno B7-1/genética , Diabetes Mellitus Tipo 1/imunologia , Antígenos HLA-DQ/genética , Insulina/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Feminino , Antígenos H-2/genética , Antígeno HLA-A2/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Adulto Jovem
12.
Diabetes ; 70(12): 2879-2891, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561224

RESUMO

In type 1 diabetes, autoimmune ß-cell destruction may be favored by neoantigens harboring posttranslational modifications (PTMs) such as citrullination. We studied the recognition of native and citrullinated glucose-regulated protein (GRP)78 peptides by CD8+ T cells. Citrullination modulated T-cell recognition and, to a lesser extent, HLA-A2 binding. GRP78-reactive CD8+ T cells circulated at similar frequencies in healthy donors and donors with type 1 diabetes and preferentially recognized either native or citrullinated versions, without cross-reactivity. Rather, the preference for native GRP78 epitopes was associated with CD8+ T cells cross-reactive with bacterial mimotopes. In the pancreas, a dominant GRP78 peptide was instead preferentially recognized when citrullinated. To further clarify these recognition patterns, we considered the possibility of citrullination in the thymus. Citrullinating peptidylarginine deiminase (Padi) enzymes were expressed in murine and human medullary epithelial cells (mTECs), with citrullinated proteins detected in murine mTECs. However, Padi2 and Padi4 expression was diminished in mature mTECs from NOD mice versus C57BL/6 mice. We conclude that, on one hand, the CD8+ T cell preference for native GRP78 peptides may be shaped by cross-reactivity with bacterial mimotopes. On the other hand, PTMs may not invariably favor loss of tolerance because thymic citrullination, although impaired in NOD mice, may drive deletion of citrulline-reactive T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citrulinação/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Chaperona BiP do Retículo Endoplasmático/imunologia , Epitopos de Linfócito T/metabolismo , Adolescente , Adulto , Animais , Criança , Citrulinação/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Chaperona BiP do Retículo Endoplasmático/química , Chaperona BiP do Retículo Endoplasmático/metabolismo , Epitopos de Linfócito T/química , Feminino , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Processamento de Proteína Pós-Traducional/imunologia , Processamento de Proteína Pós-Traducional/fisiologia , Adulto Jovem
13.
Front Endocrinol (Lausanne) ; 11: 568446, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042023

RESUMO

Type 1 diabetes (T1D) is a chronic disease caused by the selective destruction of the insulin-producing pancreatic beta cells by infiltrating immune cells. We presently evaluated the transcriptomic signature observed in beta cells in early T1D and compared it with the signatures observed following in vitro exposure of human islets to inflammatory or metabolic stresses, with the aim of identifying "footprints" of the immune assault in the target beta cells. We detected similarities between the beta cell signatures induced by cytokines present at different moments of the disease, i.e., interferon-α (early disease) and interleukin-1ß plus interferon-γ (later stages) and the beta cells from T1D patients, identifying biological process and signaling pathways activated during early and late stages of the disease. Among the first responses triggered on beta cells was an enrichment in antiviral responses, pattern recognition receptors activation, protein modification and MHC class I antigen presentation. During putative later stages of insulitis the processes were dominated by T-cell recruitment and activation and attempts of beta cells to defend themselves through the activation of anti-inflammatory pathways (i.e., IL10, IL4/13) and immune check-point proteins (i.e., PDL1 and HLA-E). Finally, we mined the beta cell signature in islets from T1D patients using the Connectivity Map, a large database of chemical compounds/drugs, and identified interesting candidates to potentially revert the effects of insulitis on beta cells.


Assuntos
Pegada de DNA/métodos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Imunidade Celular/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Humanos , Ilhotas Pancreáticas/metabolismo
14.
Front Endocrinol (Lausanne) ; 11: 596898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281748

RESUMO

Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. In light of the recent data highlighting an association between COVID-19 and diabetes, a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies. Using multiple reagents and antibodies, we showed that ACE2 is expressed in human pancreatic islets, where it is preferentially expressed in subsets of insulin producing ß-cells. ACE2 is also highly expressed in pancreas microvasculature pericytes and moderately expressed in rare scattered ductal cells. By using different ACE2 antibodies we showed that a recently described short-ACE2 isoform is also prevalently expressed in human ß-cells. Finally, using RT-qPCR, RNA-seq and High-Content imaging screening analysis, we demonstrated that pro-inflammatory cytokines, but not palmitate, increase ACE2 expression in the ß-cell line EndoC-ßH1 and in primary human pancreatic islets. Taken together, our data indicate a potential link between SARS-CoV-2 and diabetes through putative infection of pancreatic microvasculature and/or ductal cells and/or through direct ß-cell virus tropism.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Células Secretoras de Insulina/metabolismo , Microvasos/metabolismo , Pâncreas/metabolismo , SARS-CoV-2/isolamento & purificação , COVID-19/metabolismo , COVID-19/patologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Células Secretoras de Insulina/virologia , Microvasos/virologia , Pâncreas/virologia
15.
Diabetes ; 69(12): 2678-2690, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32928873

RESUMO

The antigenic peptides processed by ß-cells and presented through surface HLA class I molecules are poorly characterized. Each HLA variant (e.g., the most common being HLA-A2 and HLA-A3) carries some peptide-binding specificity. Hence, features that, despite these specificities, remain shared across variants may reveal factors favoring ß-cell immunogenicity. Building on our previous description of the HLA-A2/A3 peptidome of ß-cells, we analyzed the HLA-A3-restricted peptides targeted by circulating CD8+ T cells. Several peptides were recognized by CD8+ T cells within a narrow frequency (1-50/106), which was similar in donors with and without type 1 diabetes and harbored variable effector/memory fractions. These epitopes could be classified as conventional peptides or neoepitopes, generated either via peptide cis-splicing or mRNA splicing (e.g., secretogranin-5 [SCG5]-009). As reported for HLA-A2-restricted peptides, several epitopes originated from ß-cell granule proteins (e.g., SCG3, SCG5, and urocortin-3). Similarly, H-2Kd-restricted CD8+ T cells recognizing the murine orthologs of SCG5, urocortin-3, and proconvertase-2 infiltrated the islets of NOD mice and transferred diabetes into NOD/scid recipients. The finding of granule proteins targeted in both humans and NOD mice supports their disease relevance and identifies the insulin granule as a rich source of epitopes, possibly reflecting its impaired processing in type 1 diabetes.


Assuntos
Cromograninas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Adulto , Processamento Alternativo , Animais , Linfócitos T CD8-Positivos , Estudos de Casos e Controles , Cromograninas/genética , Simulação por Computador , Mineração de Dados , Diabetes Mellitus Tipo 1/genética , Epitopos , Feminino , Regulação da Expressão Gênica , Antígeno HLA-A3 , Humanos , Insulina , Masculino , Camundongos , Camundongos Endogâmicos NOD , Proteína Secretora Neuroendócrina 7B2/genética , Proteína Secretora Neuroendócrina 7B2/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Urocortinas/genética , Urocortinas/metabolismo , Adulto Jovem
16.
Cell Rep ; 33(9): 108466, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264613

RESUMO

Pancreatic ß cell failure is key to type 2 diabetes (T2D) onset and progression. Here, we assess whether human ß cell dysfunction induced by metabolic stress is reversible, evaluate the molecular pathways underlying persistent or transient damage, and explore the relationships with T2D islet traits. Twenty-six islet preparations are exposed to several lipotoxic/glucotoxic conditions, some of which impair insulin release, depending on stressor type, concentration, and combination. The reversal of dysfunction occurs after washout for some, although not all, of the lipoglucotoxic insults. Islet transcriptomes assessed by RNA sequencing and expression quantitative trait loci (eQTL) analysis identify specific pathways underlying ß cell failure and recovery. Comparison of a large number of human T2D islet transcriptomes with those of persistent or reversible ß cell lipoglucotoxicity show shared gene expression signatures. The identification of mechanisms associated with human ß cell dysfunction and recovery and their overlap with T2D islet traits provide insights into T2D pathogenesis, fostering the development of improved ß cell-targeted therapeutic strategies.


Assuntos
Diabetes Mellitus Tipo 2/genética , Expressão Gênica/genética , Células Secretoras de Insulina/metabolismo , Estresse Fisiológico/genética , Diabetes Mellitus Tipo 2/patologia , Humanos
17.
Nat Commun ; 11(1): 2584, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444635

RESUMO

Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells.


Assuntos
Processamento Alternativo , Células Secretoras de Insulina/fisiologia , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Processamento Alternativo/efeitos dos fármacos , Células Cultivadas , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Mineração de Dados , Diabetes Mellitus Tipo 1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Mapas de Interação de Proteínas , Proteômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
18.
J Innate Immun ; 11(4): 375-390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799417

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by islet inflammation and progressive pancreatic ß cell destruction. The disease is triggered by a combination of genetic and environmental factors, but the mechanisms leading to the triggering of early innate and late adaptive immunity and consequent progressive pancreatic ß cell death remain unclear. The insulin-producing ß cells are active secretory cells and are thus particularly sensitive to endoplasmic reticulum (ER) stress. ER stress plays an important role in the pathologic pathway leading to autoimmunity, islet inflammation, and ß cell death. We show here that group B coxsackievirus (CVB) infection, a putative causative factor for T1D, induces a partial ER stress in rat and human ß cells. The activation of the PERK/ATF4/CHOP branch is blunted while the IRE1α branch leads to increased spliced XBP1 expression and c-Jun N-terminal kinase (JNK) activation. Interestingly, JNK1 activation is essential for CVB amplification in both human and rat ß cells. Furthermore, a chemically induced ER stress preceding viral infection increases viral replication, in a process dependent on IRE1α activation. Our findings show that CVB tailors the unfolded protein response in ß cells to support their replication, preferentially triggering the pro-viral IRE1α/XBP1s/JNK1 pathway while blocking the pro-apoptotic PERK/ATF4/CHOP pathway.


Assuntos
Infecções por Coxsackievirus/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Enterovirus Humano B/fisiologia , Células Secretoras de Insulina/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Linhagem Celular , Infecções por Coxsackievirus/imunologia , Diabetes Mellitus Tipo 1/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Evasão da Resposta Imune , Células Secretoras de Insulina/virologia , MAP Quinase Quinase 4/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Transdução de Sinais , Replicação Viral , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
19.
Nat Genet ; 51(11): 1588-1595, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31676868

RESUMO

The early stages of type 1 diabetes (T1D) are characterized by local autoimmune inflammation and progressive loss of insulin-producing pancreatic ß cells. Here we show that exposure to proinflammatory cytokines reveals a marked plasticity of the ß-cell regulatory landscape. We expand the repertoire of human islet regulatory elements by mapping stimulus-responsive enhancers linked to changes in the ß-cell transcriptome, proteome and three-dimensional chromatin structure. Our data indicate that the ß-cell response to cytokines is mediated by the induction of new regulatory regions as well as the activation of primed regulatory elements prebound by islet-specific transcription factors. We find that T1D-associated loci are enriched with newly mapped cis-regulatory regions and identify T1D-associated variants disrupting cytokine-responsive enhancer activity in human ß cells. Our study illustrates how ß cells respond to a proinflammatory environment and implicate a role for stimulus response islet enhancers in T1D.


Assuntos
Cromatina/genética , Citocinas/farmacologia , Diabetes Mellitus Tipo 1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Células Secretoras de Insulina/metabolismo , Transcriptoma , Cromatina/química , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Fatores de Transcrição
20.
EBioMedicine ; 36: 367-375, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30269996

RESUMO

BACKGROUND: Antibodies targeting PD-1 and its ligand PDL1 are used in cancer immunotherapy but may lead to autoimmune diseases, including type 1 diabetes (T1D). It remains unclear whether PDL1 is expressed in pancreatic islets of people with T1D and how is it regulated. METHODS: The expression of PDL1, IRF1, insulin and glucagon was evaluated in samples of T1D donors by immunofluorescence. Cytokine-induced PDL1 expression in the human beta cell line, EndoC-ßH1, and in primary human pancreatic islets was determined by real-time RT-PCR, flow cytometry and Western blot. Specific and previously validated small interference RNAs were used to inhibit STAT1, STAT2, IRF1 and JAK1 signaling. Key results were validated using the JAK inhibitor Ruxolitinib. FINDINGS: PDL1 was present in insulin-positive cells from twelve T1D individuals (6 living and 6 deceased donors) but absent from insulin-deficient islets or from the islets of six non-diabetic controls. Interferons-α and -γ, but not interleukin-1ß, induced PDL1 expression in vitro in human islet cells and EndoC-ßH1 cells. Silencing of STAT1 or STAT2 individually did not prevent interferon-α-induced PDL1, while blocking of JAKs - a proposed therapeutic strategy for T1D - or IRF1 prevented PDL1 induction. INTERPRETATION: These findings indicate that PDL1 is expressed in beta cells from people with T1D, possibly to attenuate the autoimmune assault, and that it is induced by both type I and II interferons via IRF1.


Assuntos
Antígeno B7-H1/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Interferon-alfa/metabolismo , Interferon gama/metabolismo , Ilhotas Pancreáticas/metabolismo , Adolescente , Adulto , Biomarcadores , Linhagem Celular , Criança , Pré-Escolar , Humanos , Células Secretoras de Insulina/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA