RESUMO
BACKGROUND: Noninvasive prenatal diagnosis (NIPD) for monogenic disorders has a high uptake by families. Since 2013, our accredited public health service laboratory has offered NIPD for monogenic disorders, predominantly for de novo or paternally dominantly inherited mutations. Here we describe the extension of this service to include definitive NIPD for a recessive condition, cystic fibrosis (CF). METHODS: Definitive NIPD for CF was developed using next-generation sequencing. Validation was performed on 13 cases from 10 families before implementation. All cases referred for CF NIPD were reviewed to determine turnaround times, genotyping results, and pregnancy outcomes. RESULTS: Of 38 referrals, 36 received a result with a mean turnaround of 5.75 days (range, 3-11 days). Nine cases were initially inconclusive, with 3 reported unaffected because the low-risk paternal allele was inherited and 4 cases in which the high-risk paternal allele was inherited, receiving conclusive results following repeat testing. One case was inconclusive owing to a paternal recombination around the mutation site, and one case was uninformative because of no heterozygosity. Before 2016, 3 invasive referrals for CF were received annually compared with 38 for NIPD in the 24 months since offering a definitive NIPD service. CONCLUSIONS: Timely and accurate NIPD for definitive prenatal diagnosis of CF is possible in a public health service laboratory. The method detects recombinations, and the service is well-received as evidenced by the significant increase in referrals. The bioinformatic approach is gene agnostic and will be used to expand the range of conditions tested for.
Assuntos
Fibrose Cística/diagnóstico , Teste Pré-Natal não Invasivo/métodos , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/metabolismo , Feminino , Genótipo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único , GravidezRESUMO
BACKGROUND: Human prion diseases are relentlessly progressive neurodegenerative disorders which include sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). Aside from variants of the prion protein gene (PRNP) replicated association at genome-wide levels of significance has proven elusive. A recent association study identified variants in or near to the PLCXD3 gene locus as strong disease risk factors in multiple human prion diseases. This study claimed the first non-PRNP locus to be highly significantly associated with prion disease in genomic studies. METHODS: A sub-study of a genome-wide association study with imputation aiming to replicate the finding at PLCXD3 including 129 vCJD and 2500 sCJD samples. Whole exome sequencing to identify rare coding variants of PLCXD3. RESULTS: Imputation of relevant polymorphisms was accurate based on wet genotyping of a sample. We found no supportive evidence that PLCXD3 variants are associated with disease. CONCLUSION: The marked discordance in vCJD genotype frequencies between studies, despite extensive overlap in vCJD cases, and the finding of Hardy-Weinberg disequilibrium in the original study, suggests possible reasons for the discrepancies between studies.
Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Fosfoinositídeo Fosfolipase C/genética , Polimorfismo de Nucleotídeo Único , Síndrome de Creutzfeldt-Jakob/diagnóstico , Éxons , Loci Gênicos , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Alemanha , Humanos , Desequilíbrio de Ligação , Proteínas Priônicas , Príons/genética , Príons/metabolismo , Fatores de Risco , Estados UnidosRESUMO
BACKGROUND: Adams-Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. METHODS AND RESULTS: Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1-positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1, indicating that NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway. CONCLUSIONS: These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders.