Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 220(4601): 1005-12, 1983 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-17754532

RESUMO

A definitive long-term decrease in the extent of antarctic sea ice is not detectable from 9 years (1973 to 1981) of year-round satellite observations and limited prior data. Regional interannual variability is large, with sea ice decreasing in some regions while increasing in others. A significant decrease in overall ice extent during the mid-1970's, previously suggested to reflect warming induced by carbon dioxide, has not been maintained. In particular, the extent of ice in the Weddell Sea region has rebounded after a large decrease concurrent with a major oceanographic anomaly, the Weddell polynya. Over the 9 years, the trends are nearly the same in all seasons, but for periods of 3 to 5 years, greater winter ice maxima are associated with lesser summer ice minima. The decrease of the mid-1970's was preceded by an increase in ice extent from 1966 to 1972, further indicating the presence of cyclical components of variation that obscure any long-term trends that might be caused by a warming induced by carbon dioxide.

2.
Science ; 262(5141): 1832-7, 1993 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-17829629

RESUMO

A regional pigment retrieval algorithm for the Nimbus-7 Coastal Zone Color Scanner (CZCS) has been tested for the Southern Ocean. The pigment concentrations estimated with this algorithm agree to within 5 percent with in situ values and are more than twice as high as those previously reported. The CZCS data also revealed an asymmetric distribution of enhanced pigments in the waters surrounding Antarctica; in contrast, most surface geophysical properties are symmetrically distributed. The asymmetry is coherent with circumpolar current patterns and the availability of silicic acid in surface waters. Intense blooms (>1 milligram of pigment per cubic meter) that occur downcurrent from continental masses result from dissolved trace elements such as iron derived from shelf sediments and glacial melt.

3.
Mar Genomics ; 37: 1-17, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28970064

RESUMO

The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Pesquisa Interdisciplinar , Regiões Antárticas , Biodiversidade , Mudança Climática , Congressos como Assunto , Ecologia , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA