Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32778551

RESUMO

Tuberculosis continues to kill millions of people each year. The main difficulty in eradication of the disease is the prolonged duration of treatment, which takes at least 6 months. Persister cells have long been associated with failed treatment and disease relapse because of their phenotypical, though transient, tolerance to drugs. By targeting these persisters, the duration of treatment could be shortened, leading to improved tuberculosis treatment and a reduction in transmission. The unique in vivo environment drives the generation of persisters; however, appropriate in vivo mycobacterial persister models enabling optimized drug screening are lacking. To set up a persister infection model that is suitable for this, we infected zebrafish embryos with in vitro-starved Mycobacterium marinumIn vitro starvation resulted in a persister-like phenotype with the accumulation of stored neutral lipids and concomitant increased tolerance to ethambutol. However, these starved wild-type M. marinum organisms rapidly lost their persister phenotype in vivo To prolong the persister phenotype in vivo, we subsequently generated and analyzed mutants lacking functional resuscitation-promoting factors (Rpfs). Interestingly, the ΔrpfAB mutant, lacking two Rpfs, established an infection in vivo, whereas a nutrient-starved ΔrpfAB mutant did maintain its persister phenotype in vivo This mutant was, after nutrient starvation, also tolerant to ethambutol treatment in vivo, as would be expected for persisters. We propose that this zebrafish embryo model with ΔrpfAB mutant bacteria is a valuable addition for drug screening purposes and specifically screens to target mycobacterial persisters.


Assuntos
Mycobacterium , Preparações Farmacêuticas , Tuberculose , Animais , Etambutol , Tuberculose/tratamento farmacológico , Peixe-Zebra
2.
Artigo em Inglês | MEDLINE | ID: mdl-29661879

RESUMO

Due to the rise of drug-resistant forms of tuberculosis, there is an urgent need for novel antibiotics to effectively combat these cases and shorten treatment regimens. Recently, drug screens using whole-cell analyses have been shown to be successful. However, current high-throughput screens focus mostly on stricto sensu life/death screening that give little qualitative information. In doing so, promising compound scaffolds or nonoptimized compounds that fail to reach inhibitory concentrations are missed. To accelerate early tuberculosis (TB) drug discovery, we performed RNA sequencing on Mycobacterium tuberculosis and Mycobacterium marinum to map the stress responses that follow upon exposure to subinhibitory concentrations of antibiotics with known targets, ciprofloxacin, ethambutol, isoniazid, streptomycin, and rifampin. The resulting data set comprises the first overview of transcriptional stress responses of mycobacteria to different antibiotics. We show that antibiotics can be distinguished based on their specific transcriptional stress fingerprint. Notably, this fingerprint was more distinctive in M. marinum We decided to use this to our advantage and continue with this model organism. A selection of diverse antibiotic stress genes was used to construct stress reporters. In total, three functional reporters were constructed to respond to DNA damage, cell wall damage, and ribosomal inhibition. Subsequently, these reporter strains were used to screen a small anti-TB compound library to predict the mode of action. In doing so, we identified the putative modes of action for three novel compounds, which confirms the utility of our approach.


Assuntos
Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Animais , Sequência de Bases , Linhagem Celular , Ciprofloxacina/farmacologia , Etambutol/farmacologia , Humanos , Isoniazida/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Mycobacterium marinum/genética , Mycobacterium tuberculosis/genética , Células RAW 264.7 , RNA Bacteriano/genética , Rifampina/farmacologia , Análise de Sequência de RNA , Estreptomicina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Tuberculose Pulmonar/microbiologia
3.
PLoS Genet ; 11(5): e1005190, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25938982

RESUMO

Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow-growing mycobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium bovis/genética , Mycobacterium marinum/genética , Sistemas de Secreção Tipo VII/metabolismo , Ampicilina/farmacologia , Proteínas de Bactérias/genética , Permeabilidade da Membrana Celular , Cromatografia Líquida , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Mutação , Mycobacterium bovis/metabolismo , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem , Sistemas de Secreção Tipo VII/genética
4.
J Biol Chem ; 291(38): 19800-12, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27474746

RESUMO

Tuberculosis can be treated with a 6-month regimen of antibiotics. Although the targets of most of the first-line antibiotics have been identified, less research has focused on the intrabacterial stress responses that follow upon treatment with antibiotics. Studying the roles of these stress genes may lead to the identification of crucial stress-coping mechanisms that can provide additional drug targets to increase treatment efficacy. A three-gene operon with unknown function that is strongly up-regulated upon treatment with isoniazid and ethambutol is the iniBAC operon. We have reproduced these findings and show that iniBAC genes are also induced in infected host cells, although with higher variability. Next, we set out to elucidate the genetic network that results in iniBAC induction in Mycobacterium marinum By transposon mutagenesis, we identified that the operon is highly induced by mutations in genes encoding enzymes of the vitamin B12 biosynthesis pathway and the vitamin B12-dependent methylmalonyl-CoA-mutase MutAB. Lipid analysis showed that a mutA::tn mutant has decreased phthiocerol dimycocerosates levels, suggesting a link between iniBAC induction and the production of methyl-branched lipids. Moreover, a similar screen in Mycobacterium bovis BCG identified that phthiocerol dimycocerosate biosynthesis mutants cause the up-regulation of iniBAC genes. Based on these data, we propose that iniBAC is induced in response to mutations that cause defects in the biosynthesis of methyl-branched lipids. The resulting metabolic stress caused by these mutations or caused by ethambutol or isoniazid treatment may be relieved by iniBAC to increase the chance of bacterial survival.


Assuntos
Bacteriocinas/metabolismo , Mycobacterium marinum/metabolismo , Óperon/fisiologia , Peptídeos/metabolismo , Vitamina B 12/farmacologia , Bacteriocinas/genética , Etambutol/farmacologia , Isoniazida/farmacologia , Lipídeos de Membrana/biossíntese , Lipídeos de Membrana/genética , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Mycobacterium marinum/genética , Peptídeos/genética
5.
J Immunol ; 190(4): 1659-71, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23319735

RESUMO

Mycobacterium tuberculosis is responsible for almost 2 million deaths annually. Mycobacterium bovis bacillus Calmette-Guérin, the only vaccine available against tuberculosis (TB), induces highly variable protection against TB, and better TB vaccines are urgently needed. A prerequisite for candidate vaccine Ags is that they are immunogenic and expressed by M. tuberculosis during infection of the primary target organ, that is, the lungs of susceptible individuals. In search of new TB vaccine candidate Ags, we have used a genome-wide, unbiased Ag discovery approach to investigate the in vivo expression of 2170 M. tuberculosis genes during M. tuberculosis infection in the lungs of mice. Four genetically related but distinct mouse strains were studied, representing a spectrum of TB susceptibility controlled by the supersusceptibility to TB 1 locus. We used stringent selection approaches to select in vivo-expressed M. tuberculosis (IVE-TB) genes and analyzed their expression patterns in distinct disease phenotypes such as necrosis and granuloma formation. To study the vaccine potential of these proteins, we analyzed their immunogenicity. Several M. tuberculosis proteins were recognized by immune cells from tuberculin skin test-positive, ESAT6/CFP10-responsive individuals, indicating that these Ags are presented during natural M. tuberculosis infection. Furthermore, TB patients also showed responses toward IVE-TB Ags, albeit lower than tuberculin skin test-positive, ESAT6/CFP10-responsive individuals. Finally, IVE-TB Ags induced strong IFN-γ(+)/TNF-α(+) CD8(+) and TNF-α(+)/IL-2(+) CD154(+)/CD4(+) T cell responses in PBMC from long-term latently M. tuberculosis-infected individuals. In conclusion, these IVE-TB Ags are expressed during pulmonary infection in vivo, are immunogenic, induce strong T cell responses in long-term latently M. tuberculosis-infected individuals, and may therefore represent attractive Ags for new TB vaccines.


Assuntos
Antígenos de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/imunologia , Estudo de Associação Genômica Ampla/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Subpopulações de Linfócitos T/imunologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Animais , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/metabolismo , Modelos Animais de Doenças , Marcação de Genes/métodos , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/microbiologia , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/uso terapêutico , Tuberculose Pulmonar/microbiologia
6.
Eur J Immunol ; 41(10): 2925-36, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21728172

RESUMO

More than 2 billion individuals are latently infected with Mycobacterium tuberculosis (Mtb). Knowledge of the key Mtb antigens and responding T-cell subsets mediating protection against Mtb is critical for developing improved tuberculosis (TB) vaccines. We previously reported that Mtb DosR-regulon-encoded antigens are recognized well by human T cells in association with control of Mtb infection. The characteristics of the responding T-cell subsets, however, remained unidentified. We have therefore studied the cytokine production and memory phenotypes of Mtb DosR-regulon-encoded antigen-specific T cells from individuals who had been infected with Mtb decades ago, yet never developed TB (long-term latent Mtb-infected individuals). Using multi-parameter flow cytometry and intracellular cytokine staining for IFN-γ, TNF-α and IL-2, we found double and single cytokine-producing CD4(+) as well as CD8(+) T cells to be the most prominent subsets, particularly IFN-γ(+) TNF-α(+) CD8(+) T cells. The majority of these T cells comprised effector memory and effector T cells. Furthermore, CFSE labeling revealed strong CD4(+) and CD8(+) T-cell proliferative responses induced by several "immunodominant" Mtb DosR antigens and their specific peptide epitopes. These findings demonstrate the prominent presence of double- and monofunctional CD4(+) and CD8(+) T-cell responses in naturally protected individuals and support the possibility of designing Mtb DosR antigen-based TB vaccines.


Assuntos
Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia , Proteínas Quinases/imunologia , Idoso , Antígenos de Bactérias/imunologia , Proliferação de Células , Proteínas de Ligação a DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Interferon gama/biossíntese , Interleucina-2/biossíntese , Tuberculose Latente/microbiologia , Ativação Linfocitária/imunologia , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/biossíntese
7.
Sci Rep ; 7(1): 10665, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878275

RESUMO

Cytochrome bd is a component of the oxidative phosphorylation pathway in many Gram-positive and Gram-negative bacteria. Next to its role as a terminal oxidase in the respiratory chain this enzyme plays an important role as a survival factor in the bacterial stress response. In Mycobacterium tuberculosis and related mycobacterial strains, cytochrome bd is an important component of the defense system against antibacterial drugs. In this report we describe and evaluate an mCherry-based fluorescent reporter for detection of cytochrome bd expression in Mycobacterium marinum. Cytochrome bd was induced by mycolic acid biosynthesis inhibitors such as isoniazid and most prominently by drugs targeting oxidative phosphorylation. We observed no induction by inhibitors of protein-, DNA- or RNA-synthesis. The constructed expression reporter was suitable for monitoring mycobacterial cytochrome bd expression during mouse macrophage infection and in a zebrafish embryo infection model when using Mycobacterium marinum. Interestingly, in both these infection models cytochrome bd levels were considerably higher than during in vitro culturing of M. marinum. The expression reporter described here can be a valuable tool for elucidating the role of cytochrome bd as a survival factor.


Assuntos
Antibacterianos/farmacologia , Citocromos/genética , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Infecções por Mycobacterium/microbiologia , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Animais , Macrófagos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Peixe-Zebra
8.
Sci Rep ; 6: 37793, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892960

RESUMO

New strategies are needed to develop better tools to control TB, including identification of novel antigens for vaccination. Such Mtb antigens must be expressed during Mtb infection in the major target organ, the lung, and must be capable of eliciting human immune responses. Using genome-wide transcriptomics of Mtb infected lungs we developed data sets and methods to identify IVE-TB (in-vivo expressed Mtb) antigens expressed in the lung. Quantitative expression analysis of 2,068 Mtb genes from the predicted first operons identified the most upregulated IVE-TB genes during in-vivo pulmonary infection. By further analysing high-level conservation among whole-genome sequenced Mtb-complex strains (n = 219) and algorithms predicting HLA-class-Ia and II presented epitopes, we selected the most promising IVE-TB candidate antigens. Several of these were recognized by T-cells from in-vitro Mtb-PPD and ESAT6/CFP10-positive donors by proliferation and multi-cytokine production. This was validated in an independent cohort of latently Mtb-infected individuals. Significant T-cell responses were observed in the absence of IFN-γ-production. Collectively, the results underscore the power of our novel antigen discovery approach in identifying Mtb antigens, including those that induce unconventional T-cell responses, which may provide important novel tools for TB vaccination and biomarker profiling. Our generic approach is applicable to other infectious diseases.


Assuntos
Algoritmos , Antígenos de Bactérias/imunologia , Citocinas/metabolismo , Genoma Humano , Linfócitos T/imunologia , Animais , Proliferação de Células , Estudos de Coortes , Simulação por Computador , Regulação da Expressão Gênica , Humanos , Epitopos Imunodominantes/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Regulação para Cima
9.
Front Immunol ; 5: 256, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009541

RESUMO

In view of the fact that only a small part of the Mtb expressome has been explored for identification of antigens capable of activating human T-cell responses, which is critically required for the design of better TB vaccination strategies, more emphasis should be placed on innovative ways to discover new Mtb antigens and explore their function at the several stages of infection. Better protective antigens for TB-vaccines are urgently needed, also in view of the disappointing results of the MVA85 vaccine, which failed to induce additional protection in BCG-vaccinated infants (1). Moreover, immune responses to relevant antigens may be useful to identify TB-specific biomarker signatures. Here, we describe the potency of novel tools and strategies to reveal such Mtb antigens. Using proteins specific for different Mtb infection phases, many new antigens of the latency-associated Mtb DosR-regulon as well as resuscitation promoting factor proteins, associated with resuscitating TB, were discovered that were recognized by CD4(+) and CD8(+) T-cells. Furthermore, by employing MHC binding algorithms and bioinformatics combined with high-throughput human T-cell screens and tetramers, HLA-class Ia restricted polyfunctional CD8(+) T-cells were identified in TB patients. Comparable methods, led to the identification of HLA-E-restricted Mtb epitopes recognized by CD8(+) T-cells. A genome-wide unbiased antigen discovery approach was applied to analyze the in vivo Mtb gene expression profiles in the lungs of mice, resulting in the identification of IVE-TB antigens, which are expressed during infection in the lung, the main target organ of Mtb. IVE-TB antigens induce strong T-cell responses in long-term latently Mtb infected individuals, and represent an interesting new group of TB antigens for vaccination. In summary, new tools have helped expand our view on the Mtb antigenome involved in human cellular immunity and provided new candidates for TB vaccination.

10.
PLoS One ; 9(6): e99203, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905579

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of death worldwide. A better understanding of the role of CD4+ and CD8+ T cells, which are both important to TB protection, is essential to unravel the mechanisms of protection and to identify the key antigens seen by these T cells. We have recently identified a set of in vivo expressed Mtb genes (IVE-TB) which is expressed during in vivo pulmonary infection in mice, and shown that their encoded antigens are potently recognized by polyclonal T cells from tuberculin skin test-positive, in vitro ESAT-6/CFP10-responsive individuals. Here we have cloned T cells specific for one of these newly identified in vivo expressed Mtb (IVE-TB) antigens, Rv2034. T cells were enriched based on the expression of CD154 (CD40L), which represents a new method for selecting antigen-specific (low frequency) T cells independent of their specific function. An Rv2034-specific CD4+ T-cell clone expressed the Th1 markers T-bet, IFN-γ, TNF-α, IL-2 and the cytotoxicity related markers granzyme B and CD107a as measured by flow cytometry. The clone specifically recognized Rv2034 protein, Rv2034 peptide p81-100 and Mtb lysate. Remarkably, while the recognition of the dominant p81-100 epitope was HLA-DR restricted, the T-cell clone also recognized a neighboring epitope (p88-107) in an HLA-DR- as well as HLA-DQ1-restricted fashion. Importantly, the T-cell clone was able to inhibit Mtb outgrowth from infected monocytes significantly. The characterization of the polyfunctional and Mtb inhibitory T-cell response to IVE-TB Rv2034 at the clonal level provides detailed further insights into the potential of IVE-TB antigens as new vaccine candidate antigens in TB. Our new approach allowed the identification of T-cell subsets that likely play a significant role in controlling Mtb infection, and can be applied to the analysis of T-cell responses in patient populations.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Ligante de CD40/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Mycobacterium tuberculosis/imunologia , Proteínas Repressoras/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Células Cultivadas , Citocinas/imunologia , Epitopos de Linfócito T/genética , Feminino , Antígenos HLA-DQ/imunologia , Antígenos HLA-DR/imunologia , Humanos , Masculino , Camundongos , Mycobacterium tuberculosis/genética , Proteínas Repressoras/genética
11.
Vaccine ; 32(29): 3580-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24837764

RESUMO

Tuberculosis (TB) remains a life-threatening infectious disease of global proportions with serious negative health and economic consequences. The lack of sufficient protection induced by Mycobacterium bovis BCG, the current vaccine for TB, as well as the impact of HIV co-infection and the emergence of drug resistant Mycobacterium tuberculosis (Mtb) strains all urge for improved vaccines against TB. A minimal requirement for Mtb vaccine antigens is their in vivo expression during Mtb infection and ability to trigger significant immune responses. Recently we identified a new class of Mtb antigens, designated IVE-TB (in vivo expressed) antigens. These included Rv2034, a protein that was expressed during pulmonary infection and strongly recognized by human T-cells. Here, the in vivo immunogenicity and protective efficacy of Rv2034 was further analyzed using HLA-DR transgenic mice that lack endogenous murine MHC class II molecules. The Rv2034 protein indeed was highly immunogenic in HLA-DR3 transgenic mice and induced HLA-DR3 restricted IFN-γ(+)/TNF(+) and IFN-γ(+) CD4(+) T-cells, specific for an epitope encoded in peptide 31-50. CD4(+) T-cell responses were optimally induced when using TLR9- and TLR3-ligand-adjuvants or CAF09. Rv2034-specific antibodies were observed following immunization with either TLR2-, TLR3-, TLR4-, TLR5-, TLR7- or TLR9-ligands or CAF09. Importantly, immunization with Rv2034 or the hybrid-protein Ag85B-ESAT6-Rv2034 adjuvanted with CpG or CAF09, induced over one log reduction, relative to unvaccinated controls, in the number of bacilli in the lungs of Mtb challenged HLA-DR3 transgenic mice and guinea pigs. These data demonstrate the potential of Rv2034 as a novel, IVE-TB antigen for future TB vaccination.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas contra a Tuberculose/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Proteínas de Bactérias/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Cobaias , Antígeno HLA-DR3/genética , Interferon gama/imunologia , Ligantes , Camundongos Transgênicos , Mycobacterium tuberculosis/imunologia , Proteínas Recombinantes/imunologia , Proteínas Repressoras/imunologia , Receptores Toll-Like/imunologia , Vacinas de Subunidades Antigênicas/imunologia
12.
Clin Vaccine Immunol ; 18(4): 676-83, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21248154

RESUMO

The Mycobacterium bovis BCG vaccine is the only tuberculosis (TB) vaccine available, yet it provides limited protection against pulmonary TB in adults and fails to protect against TB reactivation. We hypothesized that immunity against Mycobacterium tuberculosis "resuscitation-promoting factors" (Rpfs), which are small bacterial proteins that promote proliferation of dormant mycobacteria, may be relevant in the human immune response to M. tuberculosis. In previous unpublished work, we found that Rpfs Rv0867c and Rv2389c induced gamma interferon (IFN-γ) production in the blood of TB patients' healthy household contacts in several different African populations. Here we examine these two dominant Rpf antigens in more detail and define the nature of the responding T-cell subsets. Multiparameter cytokine profiling showed that Rv2389c and, to a lesser extent, Rv0867c were recognized by mycobacterium-responsive healthy Dutch individuals; peptide-scanning revealed several epitopes, including a single immunodominant epitope in Rv2389c. Rv0867c and, to a lesser extent, Rv2389c Rpf-specific T-cell responses were maintained for decades in long-term M. tuberculosis nonprogressors. Prominent Rv0867c-specific double- and single-cytokine-producing CD8(+) T-cell subset responses were found, including a large population of CD8(+) effector memory and effector T-cell subsets. We conclude that M. tuberculosis Rpf antigens are important targets in the human immune response to M. tuberculosis and represent interesting TB vaccine candidate antigens.


Assuntos
Proteínas de Bactérias/imunologia , Citocinas/imunologia , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia , Subpopulações de Linfócitos T/imunologia , Idoso , Citocinas/metabolismo , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Humanos , Países Baixos
13.
Clin Vaccine Immunol ; 17(6): 993-1004, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20427628

RESUMO

Although worldwide leprosy prevalence has been reduced considerably following multidrug therapy, new case detection rates remain relatively stable, suggesting that transmission of infection still continues. This calls for new efforts, among which is development of assays that can identify subclinical/early-stage Mycobacterium leprae-infected subjects, a likely source of transmission. Areas in which leprosy is endemic often lack sophisticated laboratories, necessitating development of field-friendly immunodiagnostic tests for leprosy, like short-term whole-blood assays (WBA). In classical, peripheral blood mononuclear cell (PBMC)-based gamma interferon (IFN-gamma) release assays, M. leprae peptides have been shown to discriminate in a more specific fashion than M. leprae proteins between M. leprae-exposed contacts and patients as opposed to healthy controls from the same area of endemicity. However, peptides induced significantly lower levels of IFN-gamma than did proteins, particularly when whole blood was used. Therefore, possibilities of specifically enhancing IFN-gamma production in response to M. leprae peptides in 24-h WBA were sought by addition of various cytokines and antibodies or by mannosylation of peptides. In addition, other cytokines and chemokines were analyzed as potential biomarkers in WBA. We found that only interleukin 12 (IL-12), not other costimulants, increased IFN-gamma production in WBA while maintaining M. leprae peptide specificity, as evidenced by lack of increase of IFN-gamma in control samples stimulated with IL-12 alone. The IL-12-induced increase in IFN-gamma was mainly mediated by CD4+ T cells that did not produce IL-2 or tumor necrosis factor (TNF). Mannosylation further allowed the use of 100-fold-less peptide. Although not statistically significantly, macrophage inflammatory protein 1beta (MIP-1beta) and macrophage c protein 1 (MCP-1) levels specific for M. leprae peptide tended to be increased by IL-12. IP-10 production was also found to be a useful marker of M. leprae peptide responses, but its production was enhanced by IL-12 nonspecifically. We conclude that IFN-gamma-based WBA combined with IL-12 represents a more sensitive and robust assay for measuring reactivity to M. leprae peptides.


Assuntos
Proteínas de Bactérias/imunologia , Interferon gama/sangue , Interleucina-12/imunologia , Hanseníase/imunologia , Mycobacterium leprae/imunologia , Peptídeos/imunologia , Proteínas Recombinantes/imunologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Citocinas/imunologia , Humanos , Hanseníase/sangue , Hanseníase/diagnóstico , Ativação Linfocitária , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA