Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305860

RESUMO

Gangliosides play an imperative role in cell signaling, neuronal recovery, apoptosis, and other physiological processes. For example, GM3 can regulate hypothalamic leptin resistance and control energy homeostasis, GD3 can mediate cell proliferation and differentiation and induce apoptosis, and GQ1b can stimulate neurogenesis. Therefore, the present study sought to establish and optimize the targeted analysis method for ganglioside subclasses and their molecular species using hydrophilic interaction liquid chromatography-triple quadrupole-MS/MS (HILIC-QQQ-MS/MS). Additionally, the fragmentation pattern of different ganglioside subclasses and their retention time patterns were analyzed, providing more accurate qualitative results. The limit of quantitation (LOQ) was as low as 10-4 ng. Moreover, the molecular species of gangliosides in the liver, cortex, and hypothalamus of C57BL/6 mice were analyzed using the established method. A total of 23 ganglioside subclasses with 164 molecular species, including 40 O-acetylated ganglioside molecular species and 28 NeuGc ganglioside molecular species, were identified using the semi-quantitative analysis method of an external standard curve corrected by an internal standard. In addition to NeuGc gangliosides, the contents of ganglioside subclasses were more abundant in the mouse brain than those in the mouse liver; especially, the contents of unsaturated gangliosides in the hypothalamus were much higher than those in the liver. Among them, O-acetylated gangliosides were detected only in the cortex and hypothalamus at a concentration of up to 100 µg/mg protein (40 molecular species). Overall, the proposed method expanded the detectable number of ganglioside subclasses and molecular species in biological samples and provided more opportunities for further study of the biological functions of gangliosides.

2.
Food Res Int ; 186: 114356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729722

RESUMO

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Assuntos
Crassostrea , Plasmalogênios , Temperatura , Animais , Plasmalogênios/metabolismo , Plasmalogênios/análise , Crassostrea/genética , Crassostrea/metabolismo , Frutos do Mar/análise , Proteômica/métodos , Antioxidantes/metabolismo , Antioxidantes/análise , Fosfatase Alcalina/metabolismo , Qualidade dos Alimentos
3.
J Agric Food Chem ; 72(17): 9842-9855, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630981

RESUMO

The sea cucumber plasmalogen PlsEtn has been shown to be associated with various chronic diseases related to lipid metabolism. However, the mechanism is unclear. Therefore, the present study used the sea cucumber plasmanylcholine PakCho as a structural contrast to PlsEtn and assessed its effect in 8 week high-fat diet (HFD)-fed mice. The lipidomic approach based on high-resolution mass spectrometry combined with molecular biology techniques was used to evaluate the mechanism of PlsEtn. The results showed that both PlsEtn and PakCho significantly inhibited an increase in mouse body weight and liver total triglyceride and total cholesterol levels caused by HFD. In addition, oil red O staining demonstrated that lipid droplets stored in the liver were degraded. Meanwhile, untargeted lipidomic experiments revealed that total lipids (increased by 42.8 mmol/mg prot; p < 0.05), triglycerides (increased by 38.9 mmol/mg prot; p < 0.01), sphingolipids (increased by 1.5 mmol/mg prot; p < 0.0001), and phospholipids (increased by 2.5 mmol/mg prot; p < 0.05) were all significantly elevated under HFD. PlsEtn resolved lipid metabolism disorders by alleviating the abnormal expression of lipid subclasses. In addition, five lipid molecular species, PE (18:1/20:4), PE (18:1/20:3), PE (18:1/18:3), TG (16:0/16:0/17:0), and TG (15:0/16:0/18:1), were identified as the biomarkers of HFD-induced lipid metabolism disorders. Finally, lipophagy-associated protein expression analysis showed that HFD abnormally activated lipophagy via ULK1 phosphorylation and PlsEtn alleviated lipophagy disorder through lysosomal function promotion. In addition, PlsEtn performed better than PakCho. Taken together, the current study results unraveled the mechanism of PlsEtn in alleviating lipid metabolism disorder and offered a new theoretical foundation for the high-value development of sea cucumber.


Assuntos
Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Plasmalogênios , Pepinos-do-Mar , Triglicerídeos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Pepinos-do-Mar/química , Pepinos-do-Mar/metabolismo , Fígado/metabolismo , Masculino , Plasmalogênios/metabolismo , Triglicerídeos/metabolismo , Humanos , Lipídeos/sangue
4.
Food Chem ; 445: 138702, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350200

RESUMO

Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids (PUFAs), but is prone to oxidative degradation, resulting in the formation of oxylipins, which compromise AKO quality. Herein, we used reversed-phase-high performance liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) to perform qualitative and semi-quantitative analyses of oxylipins in AKO during storage. A total of 27 oxylipins were identified. A notable decrease in epoxy oxylipins (from 41.8 % to 26.9 % of the total oxylipins) was observed, whereas the content of dihydro oxylipins initially increased and then decreased with 48 h, as a pivotal point for AKO quality decline during storage. We suspected that the ratio of dihydroxyl and epoxy oxylipins could be a novel oxidative index to evaluate the oxidation of AKO. Statistical analysis allowed the identification of five oxylipins which showed unique correlations with various indexes. The findings discussed herein provide important new insights into mechanisms of oxidation occurring in AKO during storage.


Assuntos
Euphausiacea , Animais , Euphausiacea/química , Espectrometria de Massas em Tandem , Oxilipinas , Óleos/química , Oxirredução
5.
J Agric Food Chem ; 72(29): 16312-16322, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985073

RESUMO

Sea cucumber phospholipids have ameliorative effects on various diseases related to lipid metabolism. However, it is unclear whether it can ameliorate obesity-associated glomerulopathy (ORG) induced by a high-fat diet (HFD). The present study applied UPLC-QqQ-MS/MS and atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry imaging (AP-MALDI MSI) to investigate the effects of sea cucumber phospholipids, including plasmalogen PlsEtn and plasmanylcholine PakCho, on phospholipid profiles in the HFD-induced ORG mouse kidney. Quantitative analysis of 135 phospholipids revealed that PlsEtn and PakCho significantly modulated phospholipid levels. Notably, PlsEtn modulated kidney overall phospholipids better than PakCho. Imaging the "space-content" of 9 phospholipids indicated that HFD significantly increased phospholipid content within the renal cortex. Furthermore, PlsEtn and PakCho significantly decreased the expression of transport-related proteins CD36, while elevating the expression of fatty acid ß-oxidation-related protein PPAR-α in the renal cortex. In conclusion, sea cucumber phospholipids reduced renal lipid accumulation, ameliorated renal damage, effectively regulated the content and distribution of renal phospholipids, and improved phospholipid homeostasis, exerting an anti-OGR effect.


Assuntos
Rim , Camundongos Endogâmicos C57BL , Obesidade , Fosfolipídeos , Pepinos-do-Mar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Animais , Pepinos-do-Mar/química , Pepinos-do-Mar/metabolismo , Camundongos , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Rim/metabolismo , Rim/química , Espectrometria de Massas em Tandem/métodos , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida de Alta Pressão/métodos , Obesidade/metabolismo , Humanos , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Nefropatias/metabolismo
6.
J Agric Food Chem ; 72(29): 16475-16483, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38987705

RESUMO

Emerging technologies for cell-cultured fish meat as an environmentally friendly protein source for humans still have many obstacles, including large-scale production of high-quality cells, differentiation and bioassembly of cellular material, and improvement of the quality of meat products. Here, we used edible porous microcarriers as scaffolds to support scalable skeletal muscle cell expansion to prepare centimeter-scale cell-cultured fish (CCM) of Carassius auratus for the first time. The quality of CCM was assessed by analyzing the texture, nutrition, flavor, and safety. The results indicated that CCM demonstrated a softer texture than natural fish due to a high moisture content. CCM contained higher protein and lower fat contents, with no significant difference in energy from natural golden crucian carp meat (NGM). CCM had better digestible properties, and 17 volatile components were identified in CCM, ten cocontained compared to NGM. ELISA quantified penicillin, streptomycin, vitamin D, and insulin residues as risk factors in CCM. In conclusion, we utilized edible porous microcarriers to scale-up the expansion of Carassius auratus skeletal muscle cells and bioassembled high-quality CCM of Carassius auratus for the first time, which represents a state-of-the-art protocol applicable to different fish species and even to other economic animals and provides a theoretical basis for scaling up cell-cultured meat production.


Assuntos
Carpa Dourada , Músculo Esquelético , Animais , Músculo Esquelético/química , Músculo Esquelético/citologia , Porosidade , Carne/análise , Técnicas de Cultura de Células , Proteínas de Peixes/química , Células Cultivadas , Alimentos Marinhos/análise
7.
J Agric Food Chem ; 72(30): 17072-17083, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39022817

RESUMO

Microalgae, integral to marine ecosystems for their rich nutrient content, notably lipids and proteins, were investigated by using reversed-phase liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RPLC-Q-TOF-MS/MS). This study focused on lipid composition in three commonly used microalgae species (Spirulina platensis, Chlorella vulgaris, and Schizochytrium limacinum) for functional food applications. The analysis unveiled more than 700 lipid molecular species, including glycolipids (GLs), phospholipids (PLs), sphingolipids (SLs), glycerolipids, and betaine lipids (BLs). GLs (19.9-64.8%) and glycerolipids (24.1-70.4%) comprised the primary lipid. Some novel lipid content, such as acylated monogalactosyldiacylglycerols (acMGDG) and acylated digalactosyldiacylglycerols (acDGDG), ranged from 0.62 to 9.68%. The analysis revealed substantial GLs, PLs, and glycerolipid variations across microalgae species. Notably, S. platensis and C. vulgaris displayed a predominance of fatty acid (FA) 18:2 and FA 18:3 in GLs, while S. limacinum exhibited a prevalence of FA 16:0, collectively constituting over 60% of the FAs of GLs. In terms of PLs and glycerolipids, S. platensis and C. vulgaris displayed elevated levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA), whereas S. limacinum exhibited a significant presence of docosahexaenoic acid (DHA). Principal component analysis (PCA) revealed MGDG (16:0/18:1), DG (16:0/22:5), Cer (d18:1/20:0), and LPC (16:1) as promising lipid markers for discriminating between these microalgae samples. This study contributes to a comprehensive understanding of lipid profiles in three microalgae species, emphasizing their distinct biochemical characteristics and potentially informing us of their high-value utilization in the food industry.


Assuntos
Lipidômica , Lipídeos , Microalgas , Espectrometria de Massas em Tandem , Microalgas/química , Microalgas/classificação , Microalgas/metabolismo , Espectrometria de Massas em Tandem/métodos , Lipidômica/métodos , Lipídeos/análise , Lipídeos/química , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Chlorella vulgaris/classificação , Estramenópilas/química , Estramenópilas/classificação , Estramenópilas/metabolismo , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA