RESUMO
Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. Staphylococcus, a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain-specific manners. To unlock the potential of engineering skin microbial communities, we aim to characterize the diversity of this genus within the context of the skin environment. We reanalyzed an extant 16S rRNA amplicon dataset obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. S. epidermidis, S. capitis, and S. hominis were the most abundant staphylococcal species present in all volunteers and were detected at all body sites. Pan-genome analysis of isolates from these three species revealed that the genus-core was dominated by central metabolism genes. Species-restricted-core genes encoded known host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.
Assuntos
Pele , Staphylococcus , Humanos , Staphylococcus/genética , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Staphylococcus epidermidis/genética , GenômicaRESUMO
BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.
Assuntos
Microbioma Gastrointestinal , Doença Granulomatosa Crônica , Doenças Inflamatórias Intestinais , Humanos , Doença Granulomatosa Crônica/genética , NADPH Oxidases , Estudos TransversaisRESUMO
BACKGROUND: Plumbing systems are an infrequent but known reservoir for opportunistic microbial pathogens that can infect hospitalized patients. In 2016, a cluster of clinical sphingomonas infections prompted an investigation. METHODS: We performed whole-genome DNA sequencing on clinical isolates of multidrug-resistant Sphingomonas koreensis identified from 2006 through 2016 at the National Institutes of Health (NIH) Clinical Center. We cultured S. koreensis from the sinks in patient rooms and performed both whole-genome and shotgun metagenomic sequencing to identify a reservoir within the infrastructure of the hospital. These isolates were compared with clinical and environmental S. koreensis isolates obtained from other institutions. RESULTS: The investigation showed that two isolates of S. koreensis obtained from the six patients identified in the 2016 cluster were unrelated, but four isolates shared more than 99.92% genetic similarity and were resistant to multiple antibiotic agents. Retrospective analysis of banked clinical isolates of sphingomonas from the NIH Clinical Center revealed the intermittent recovery of a clonal strain over the past decade. Unique single-nucleotide variants identified in strains of S. koreensis elucidated the existence of a reservoir in the hospital plumbing. Clinical S. koreensis isolates from other facilities were genetically distinct from the NIH isolates. Hospital remediation strategies were guided by results of microbiologic culturing and fine-scale genomic analyses. CONCLUSIONS: This genomic and epidemiologic investigation suggests that S. koreensis is an opportunistic human pathogen that both persisted in the NIH Clinical Center infrastructure across time and space and caused health care-associated infections. (Funded by the NIH Intramural Research Programs.).
Assuntos
Infecção Hospitalar/microbiologia , Reservatórios de Doenças/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Engenharia Sanitária , Sphingomonas/genética , Antibacterianos/farmacologia , Hospitais Federais , Humanos , Metagenômica , Testes de Sensibilidade Microbiana , National Institutes of Health (U.S.) , Estudos Retrospectivos , Sphingomonas/efeitos dos fármacos , Sphingomonas/isolamento & purificação , Estados Unidos , Abastecimento de Água , Sequenciamento Completo do GenomaRESUMO
The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A(+) CD8(+) T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Pele/imunologia , Pele/microbiologia , Simbiose/imunologia , Animais , Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/citologia , Células Dendríticas/citologia , Humanos , Imunidade Inata/imunologia , Interleucina-17/imunologia , Células de Langerhans/citologia , Células de Langerhans/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Primatas , Pele/citologia , Staphylococcus epidermidis/imunologiaRESUMO
The varied topography of human skin offers a unique opportunity to study how the body's microenvironments influence the functional and taxonomic composition of microbial communities. Phylogenetic marker gene-based studies have identified many bacteria and fungi that colonize distinct skin niches. Here metagenomic analyses of diverse body sites in healthy humans demonstrate that local biogeography and strong individuality define the skin microbiome. We developed a relational analysis of bacterial, fungal and viral communities, which showed not only site specificity but also individual signatures. We further identified strain-level variation of dominant species as heterogeneous and multiphyletic. Reference-free analyses captured the uncharacterized metagenome through the development of a multi-kingdom gene catalogue, which was used to uncover genetic signatures of species lacking reference genomes. This work is foundational for human disease studies investigating inter-kingdom interactions, metabolic changes and strain tracking, and defines the dual influence of biogeography and individuality on microbial composition and function.
Assuntos
Metagenoma , Pele/microbiologia , Pele/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Feminino , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma Viral/genética , Genômica , Voluntários Saudáveis , Humanos , Masculino , Metagenoma/genética , Filogenia , Propionibacterium acnes/genética , Propionibacterium acnes/isolamento & purificação , Propionibacterium acnes/virologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação , Staphylococcus epidermidis/virologia , SimbioseRESUMO
Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.
Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Fungos/isolamento & purificação , Pele/microbiologia , Adulto , Bactérias/classificação , Bactérias/genética , Bases de Dados Genéticas , District of Columbia , Feminino , Fungos/classificação , Fungos/genética , Saúde , Homeostase , Humanos , Malassezia/classificação , Malassezia/genética , Malassezia/isolamento & purificação , Masculino , Dados de Sequência Molecular , Pele/anatomia & histologia , Adulto JovemRESUMO
Perirectal surveillance cultures and a stool culture grew Aeromonas species from three patients over a 6-week period and were without epidemiological links. Detection of the blaKPC-2 gene in one isolate prompted inclusion of non-Enterobacteriaceae in our surveillance culture workup. Whole-genome sequencing confirmed that the isolates were unrelated and provided data for Aeromonas reference genomes.
Assuntos
Aeromonas hydrophila/enzimologia , Aeromonas hydrophila/genética , Canal Anal/microbiologia , Proteínas de Bactérias/genética , Genoma Bacteriano , Análise de Sequência de DNA , beta-Lactamases/genética , Adulto , Aeromonas hydrophila/classificação , Aeromonas hydrophila/isolamento & purificação , Monitoramento Epidemiológico , Fezes/microbiologia , Variação Genética , Genótipo , Humanos , Epidemiologia MolecularRESUMO
Atopic dermatitis (AD) has long been associated with Staphylococcus aureus skin colonization or infection and is typically managed with regimens that include antimicrobial therapies. However, the role of microbial communities in the pathogenesis of AD is incompletely characterized. To assess the relationship between skin microbiota and disease progression, 16S ribosomal RNA bacterial gene sequencing was performed on DNA obtained directly from serial skin sampling of children with AD. The composition of bacterial communities was analyzed during AD disease states to identify characteristics associated with AD flares and improvement post-treatment. We found that microbial community structures at sites of disease predilection were dramatically different in AD patients compared with controls. Microbial diversity during AD flares was dependent on the presence or absence of recent AD treatments, with even intermittent treatment linked to greater bacterial diversity than no recent treatment. Treatment-associated changes in skin bacterial diversity suggest that AD treatments diversify skin bacteria preceding improvements in disease activity. In AD, the proportion of Staphylococcus sequences, particularly S. aureus, was greater during disease flares than at baseline or post-treatment, and correlated with worsened disease severity. Representation of the skin commensal S. epidermidis also significantly increased during flares. Increases in Streptococcus, Propionibacterium, and Corynebacterium species were observed following therapy. These findings reveal linkages between microbial communities and inflammatory diseases such as AD, and demonstrate that as compared with culture-based studies, higher resolution examination of microbiota associated with human disease provides novel insights into global shifts of bacteria relevant to disease progression and treatment.
Assuntos
Dermatite Atópica/microbiologia , Metagenoma , Pele/microbiologia , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Bases de Dados Genéticas , Dermatite Atópica/patologia , Humanos , Tipagem Molecular , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus/genética , Estatísticas não ParamétricasRESUMO
Carbapenem resistance in Gram-negative bacteria is on the rise in the United States. A regional network was established to study microbiological and genetic determinants of clinical outcomes in hospitalized patients with carbapenem-resistant (CR) Klebsiella pneumoniae in a prospective, multicenter, observational study. To this end, predefined clinical characteristics and outcomes were recorded and K. pneumoniae isolates were analyzed for strain typing and resistance mechanism determination. In a 14-month period, 251 patients were included. While most of the patients were admitted from long-term care settings, 28% of them were admitted from home. Hospitalizations were prolonged and complicated. Nonsusceptibility to colistin and tigecycline occurred in isolates from 7 and 45% of the patients, respectively. Most of the CR K. pneumoniae isolates belonged to repetitive extragenic palindromic PCR (rep-PCR) types A and B (both sequence type 258) and carried either blaKPC-2 (48%) or blaKPC-3 (51%). One isolate tested positive for blaNDM-1, a sentinel discovery in this region. Important differences between strain types were noted; rep-PCR type B strains were associated with blaKPC-3 (odds ratio [OR], 294; 95% confidence interval [CI], 58 to 2,552; P < 0.001), gentamicin nonsusceptibility (OR, 24; 95% CI, 8.39 to 79.38; P < 0.001), amikacin susceptibility (OR, 11.0; 95% CI, 3.21 to 42.42; P < 0.001), tigecycline nonsusceptibility (OR, 5.34; 95% CI, 1.30 to 36.41; P = 0.018), a shorter length of stay (OR, 0.98; 95% CI, 0.95 to 1.00; P = 0.043), and admission from a skilled-nursing facility (OR, 3.09; 95% CI, 1.26 to 8.08; P = 0.013). Our analysis shows that (i) CR K. pneumoniae is seen primarily in the elderly long-term care population and that (ii) regional monitoring of CR K. pneumoniae reveals insights into molecular characteristics. This work highlights the crucial role of ongoing surveillance of carbapenem resistance determinants.
Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Farmacorresistência Bacteriana , Feminino , Genoma Bacteriano , Humanos , Imipenem/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Masculino , Meropeném , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Epidemiologia Molecular , Reação em Cadeia da Polimerase , Vigilância em Saúde Pública , Análise de Sobrevida , Tienamicinas/farmacologia , Resultado do TratamentoRESUMO
SUMMARY: At the rate that prokaryotic genomes can now be generated, comparative genomics studies require a flexible method for quickly and accurately predicting orthologs among the rapidly changing set of genomes available. SPOCS implements a graph-based ortholog prediction method to generate a simple tab-delimited table of orthologs and in addition, html files that provide a visualization of the predicted ortholog/paralog relationships to which gene/protein expression metadata may be overlaid. AVAILABILITY AND IMPLEMENTATION: A SPOCS web application is freely available at http://cbb.pnnl.gov/portal/tools/spocs.html. Source code for Linux systems is also freely available under an open source license at http://cbb.pnnl.gov/portal/software/spocs.html; the Boost C++ libraries and BLAST are required.
Assuntos
Genômica/métodos , Genoma , Internet , Linguagens de Programação , Proteínas/genética , Design de SoftwareRESUMO
Index hopping causes read assignment errors in data from multiplexed sequencing libraries. This issue has become more prevalent with the widespread use of high-capacity sequencers and highly multiplexed single-cell RNA sequencing (scRNA-seq) libraries. We conducted deep, plate-based scRNA-seq on a mixed population of mouse skin cells. Analysis of transcriptomes from 1152 cells identified four distinct cell types. To estimate the error rate in sample assignment due to index hopping, we employed differential expression analysis to identify signature genes that were highly and specifically expressed in each cell type. We quantified the proportion of misassigned reads by examining the detection rates of signature genes in other cell types. Remarkably, regardless of gene expression levels, we estimated that 0.65% of reads per gene were assigned to incorrect cell across our data. To computationally compensate for index hopping, we developed a simple correction method wherein, for each gene, 0.65% of the library's average expression level was subtracted from the expression of each cell. This correction had notable effects on transcriptome analyses, including increased cell-cell clustering distance and alterations in intermediate state assignments of cell differentiation. These findings underscore the potential impact of index hopping on experimental results. In conclusion, we devised a straightforward method to estimate and correct for the index hopping rate by quantifying misassigned genes in distinct cell types within an scRNA-seq library. This approach can be applied to any barcoded, multiplexed scRNA-seq library containing cells with distinct expression profiles, allowing for correction of the expression matrix before conducting biological analysis. AUTHOR SUMMARY: Index hopping causes errors in multiplexed high-throughput sequencing data whereby inaccurate barcoding leads to the misassignment of sequence reads to an incorrect source. This can result in gene expression assignments to the wrong cell in single-cell RNA sequencing (scRNA-seq). We performed scRNA-seq on sorted mouse skin cells and identified four distinct cell types based on gene expression profiles. Using genes unique to each cell type, we discovered that approximately 0.65% of total reads per gene were incorrectly assigned to another cell due to index hopping, regardless of gene expression levels. To correct for the misassigned reads, we proportionally adjusted each cell's gene expression data. Applying this correction improved analyses allowing for enhanced cell clustering accuracy and refining the identification of intermediate cell states during cell differentiation. Our study emphasizes the significance of index hopping in scRNA-seq experiments and presents a practical correction approach to remove misassigned reads that can be applied to any scRNA-seq study involving cells with distinct gene expression profiles or where non-expressed genes are introduced as a quality control measure during library preparation.
RESUMO
The draft genome of Mucor velutinosus NIH1002, a 2011 isolate from a case of disseminated disease, was sequenced using PacBio long-read and HiSeq short-read technologies. The genome has 43 contigs, an N50 of 2.65 Mb, and 13,295 protein-coding genes. It is the most complete M. velutinosus genome to date.
RESUMO
Corynebacterium is a predominant genus in the skin microbiome, yet its genetic diversity on skin is incompletely characterized and lacks a comprehensive set of reference genomes. Our work aims to investigate the distribution of Corynebacterium species on the skin, as well as to expand the existing genome reference catalog to enable more complete characterization of skin metagenomes. We used V1-V3 16S rRNA gene sequencing data from 14 body sites of 23 healthy volunteers to characterize Corynebacterium diversity and distribution across healthy human skin. Corynebacterium tuberculostearicum is the predominant species found on human skin and we identified two distinct C. tuberculostearicum ribotypes (A & B) that can be distinguished by variation in the 16S rRNA V1-V3 sequence. One is distributed across all body sites and the other found primarily on the feet. We performed whole genome sequencing of 40 C. tuberculostearicum isolates cultured from the skin of five healthy individuals across seven skin sites. We generated five closed genomes of diverse C. tuberculostearicum which revealed that C. tuberculostearicum isolates are largely syntenic and carry a diversity of methylation patterns, plasmids and CRISPR/Cas systems. The pangenome of C. tuberculostearicum is open with a core genome size of 1806 genes and a pangenome size of 5451 total genes. This expanded pangenome enabled the mapping of 24% more C. tuberculostearicum reads from shotgun metagenomic datasets derived from skin body sites. Finally, while the genomes from this study all fall within a C. tuberculostearicum species complex, the ribotype B isolates may constitute a new species.
RESUMO
Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. Staphylococcus, a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain specific manners. To unlock the potential of engineering skin microbial communities, we aim to fully characterize the functional diversity of this genus within the context of the skin environment. We conducted metagenome and pan-genome analyses of isolates obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. S. epidermidis, S. capitis, and S. hominis were the most abundant species present in all volunteers and were detected at all body sites. Pan-genome analysis of these three species revealed that the genus-core was dominated by central metabolism genes. Species-specific core genes were enriched in host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene-sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.
RESUMO
IMPORTANCE: Amplicon sequencing data combined with isolate whole genome sequencing have expanded our understanding of Corynebacterium on the skin. Healthy human skin is colonized by a diverse collection of Corynebacterium species, but Corynebacterium tuberculostearicum predominates on many skin sites. Our work supports the emerging idea that C. tuberculostearicum is a species complex encompassing several distinct species. We produced a collection of genomes that help define this complex, including a potentially new species we term Corynebacterium hallux based on a preference for sites on the feet, whole-genome average nucleotide identity, pangenomic analysis, and growth in skin-like media. This isolate collection and high-quality genome resource set the stage for developing engineered strains for both basic and translational clinical studies.
Assuntos
Infecções por Corynebacterium , Microbiota , Humanos , Infecções por Corynebacterium/microbiologia , Genômica , Sequenciamento Completo do Genoma , Microbiota/genéticaRESUMO
Atopic dermatitis (AD) is a multifactorial, chronic relapsing disease associated with genetic and environmental factors. Among skin microbes, Staphylococcus aureus and Staphylococcus epidermidis are associated with AD, but how genetic variability and staphylococcal strains shape the disease remains unclear. We investigated the skin microbiome of an AD cohort (n = 54) as part of a prospective natural history study using shotgun metagenomic and whole genome sequencing, which we analyzed alongside publicly available data (n = 473). AD status and global geographical regions exhibited associations with strains and genomic loci of S. aureus and S. epidermidis. In addition, antibiotic prescribing patterns and within-household transmission between siblings shaped colonizing strains. Comparative genomics determined that S. aureus AD strains were enriched in virulence factors, whereas S. epidermidis AD strains varied in genes involved in interspecies interactions and metabolism. In both species, staphylococcal interspecies genetic transfer shaped gene content. These findings reflect the staphylococcal genomic diversity and dynamics associated with AD.
Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Humanos , Dermatite Atópica/genética , Staphylococcus aureus/genética , Estudos Prospectivos , Staphylococcus/genética , Pele , Staphylococcus epidermidis/genéticaRESUMO
Corynebacterium species are globally ubiquitous in human nasal microbiota across the lifespan. Moreover, nasal microbiota profiles typified by higher relative abundances of Corynebacterium are often positively associated with health. Among the most common human nasal Corynebacterium species are C. propinquum, C. pseudodiphtheriticum, C. accolens, and C. tuberculostearicum. Based on the prevalence of these species, at least two likely coexist in the nasal microbiota of 82% of adults. To gain insight into the functions of these four species, we identified genomic, phylogenomic, and pangenomic properties and estimated the functional protein repertoire and metabolic capabilities of 87 distinct human nasal Corynebacterium strain genomes: 31 from Botswana and 56 from the U.S. C. pseudodiphtheriticum had geographically distinct clades consistent with localized strain circulation, whereas some strains from the other species had wide geographic distribution across Africa and North America. All four species had similar genomic and pangenomic structures. Gene clusters assigned to all COG metabolic categories were overrepresented in the persistent (core) compared to the accessory genome of each species indicating limited strain-level variability in metabolic capacity. Moreover, core metabolic capabilities were highly conserved among the four species indicating limited species-level metabolic variation. Strikingly, strains in the U.S. clade of C. pseudodiphtheriticum lacked genes for assimilatory sulfate reduction present in the Botswanan clade and in the other studied species, indicating a recent, geographically related loss of assimilatory sulfate reduction. Overall, the minimal species and strain variability in metabolic capacity implies coexisting strains might have limited ability to occupy distinct metabolic niches.
RESUMO
BACKGROUND: Metagenome-assembled genomes have greatly expanded the reference genomes for skin microbiome. However, the current reference genomes are largely based on samples from adults in North America and lack representation from infants and individuals from other continents. RESULTS: Here we use deep shotgun metagenomic sequencing to profile the skin microbiota of 215 infants at age 2-3 months and 12 months who are part of the VITALITY trial in Australia as well as 67 maternally matched samples. Based on the infant samples, we present the Early-Life Skin Genomes (ELSG) catalog, comprising 9483 prokaryotic genomes from 1056 species, 206 fungal genomes from 13 species, and 39 eukaryotic viral sequences. This genome catalog substantially expands the diversity of species previously known to comprise human skin microbiome and improves the classification rate of sequenced data by 21%. The protein catalog derived from these genomes provides insights into the functional elements such as defense mechanisms that distinguish early-life skin microbiome. We also find evidence for microbial sharing at the community, bacterial species, and strain levels between mothers and infants. CONCLUSIONS: Overall, the ELSG catalog uncovers the skin microbiome of a previously underrepresented age group and population and provides a comprehensive view of human skin microbiome diversity, function, and development in early life.
Assuntos
Microbiota , Humanos , Lactente , Microbiota/genética , Metagenoma , Bactérias/genética , Austrália , América do Norte , MetagenômicaRESUMO
Metagenome-assembled genomes have greatly expanded the reference genomes for skin microbiome. However, the current reference genomes are largely based on samples from adults in North America and lack representation from infants and individuals from other continents. Here we used ultra-deep shotgun metagenomic sequencing to profile the skin microbiota of 215 infants at age 2-3 months and 12 months who were part of the VITALITY trial in Australia as well as 67 maternally-matched samples. Based on the infant samples, we present the Early-Life Skin Genomes (ELSG) catalog, comprising 9,194 bacterial genomes from 1,029 species, 206 fungal genomes from 13 species, and 39 eukaryotic viral sequences. This genome catalog substantially expands the diversity of species previously known to comprise human skin microbiome and improves the classification rate of sequenced data by 25%. The protein catalog derived from these genomes provides insights into the functional elements such as defense mechanisms that distinguish early-life skin microbiome. We also found evidence for vertical transmission at the microbial community, individual skin bacterial species and strain levels between mothers and infants. Overall, the ELSG catalog uncovers the skin microbiome of a previously underrepresented age group and population and provides a comprehensive view of human skin microbiome diversity, function, and transmission in early life.
RESUMO
The complex interplay between microbiota and immunity is important to human health. To explore how altered adaptive immunity influences the microbiome, we characterize skin, nares, and gut microbiota of patients with recombination-activating gene (RAG) deficiency-a rare genetically defined inborn error of immunity (IEI) that results in a broad spectrum of clinical phenotypes. Integrating de novo assembly of metagenomes from RAG-deficient patients with reference genome catalogs provides an expansive multi-kingdom view of microbial diversity. RAG-deficient patient microbiomes exhibit inter-individual variation, including expansion of opportunistic pathogens (e.g., Corynebacterium bovis, Haemophilus influenzae), and a relative loss of body site specificity. We identify 35 and 27 bacterial species derived from skin/nares and gut microbiomes, respectively, which are distinct to RAG-deficient patients compared to healthy individuals. Underscoring IEI patients as potential reservoirs for viral persistence and evolution, we further characterize the colonization of eukaryotic RNA viruses (e.g., Coronavirus 229E, Norovirus GII) in this patient population.