Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
EMBO Rep ; 23(6): e54721, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383427

RESUMO

Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre-clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late-stage mdx mice exhibit aberrant HDAC activity and genome-wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo-acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late-stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi-induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper-acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late-stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease-associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti-fibrotic effects at late stages of DMD.


Assuntos
Inibidores de Histona Desacetilases , Distrofia Muscular de Duchenne , Animais , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
2.
EMBO Rep ; 21(9): e50863, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32754983

RESUMO

We show that extracellular vesicles (EVs) released by mesenchymal cells (i.e., fibro-adipogenic progenitors-FAPs) mediate microRNA (miR) transfer to muscle stem cells (MuSCs) and that exposure of dystrophic FAPs to HDAC inhibitors (HDACis) increases the intra-EV levels of a subset of miRs, which cooperatively target biological processes of therapeutic interest, including regeneration, fibrosis, and inflammation. Increased levels of miR-206 in EVs released by FAPs of muscles from Duchenne muscular dystrophy (DMD) patients or mdx mice exposed to HDACi are associated with enhanced regeneration and decreased fibrosis. Consistently, EVs from HDACi-treated dystrophic FAPs can stimulate MuSC activation and expansion ex vivo, and promote regeneration, while inhibiting fibrosis and inflammation of dystrophic muscles, upon intramuscular transplantation in mdx mice, in vivo. AntagomiR-mediated blockade of individual miRs reveals a specific requirement of miR-206 for EV-induced expansion of MuSCs and regeneration of dystrophic muscles, and indicates that cooperative activity of HDACi-induced miRs accounts for the net biological effect of these EVs. These data point to pharmacological modulation of EV content as novel strategy for therapeutic interventions in muscular dystrophies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , MicroRNAs/genética , Músculo Esquelético
3.
Genes Dev ; 28(8): 841-57, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24682306

RESUMO

Fibro-adipogenic progenitors (FAPs) are important components of the skeletal muscle regenerative environment. Whether FAPs support muscle regeneration or promote fibro-adipogenic degeneration is emerging as a key determinant in the pathogenesis of muscular diseases, including Duchenne muscular dystrophy (DMD). However, the molecular mechanism that controls FAP lineage commitment and activity is currently unknown. We show here that an HDAC-myomiR-BAF60 variant network regulates the fate of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray, genome-wide chromatin remodeling by nuclease accessibility (NA) combined with next-generation sequencing (NA-seq), small RNA sequencing (RNA-seq), and microRNA (miR) high-throughput screening (HTS) against SWI/SNF BAF60 variants revealed that HDAC inhibitors (HDACis) derepress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease. Specifically, HDAC inhibition induces two core components of the myogenic transcriptional machinery, MYOD and BAF60C, and up-regulates the myogenic miRs (myomiRs) (miR-1.2, miR-133, and miR-206), which target the alternative BAF60 variants BAF60A and BAF60B, ultimately directing promyogenic differentiation while suppressing the fibro-adipogenic phenotype. In contrast, FAPs from late stage dystrophic muscles are resistant to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the promyogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bipotency by epigenetic intervention with HDACis provides a molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles.


Assuntos
Histona Desacetilases/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Células-Tronco/metabolismo , Animais , Reprogramação Celular/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
4.
EMBO J ; 31(2): 301-16, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22068056

RESUMO

Tissue-specific transcriptional activators initiate differentiation towards specialized cell types by inducing chromatin modifications permissive for transcription at target loci, through the recruitment of SWItch/Sucrose NonFermentable (SWI/SNF) chromatin-remodelling complex. However, the molecular mechanism that regulates SWI/SNF nuclear distribution in response to differentiation signals is unknown. We show that the muscle determination factor MyoD and the SWI/SNF subunit BAF60c interact on the regulatory elements of MyoD-target genes in myoblasts, prior to activation of transcription. BAF60c facilitates MyoD binding to target genes and marks the chromatin for signal-dependent recruitment of the SWI/SNF core to muscle genes. BAF60c phosphorylation on a conserved threonine by differentiation-activated p38α kinase is the signal that promotes incorporation of MyoD-BAF60c into a Brg1-based SWI/SNF complex, which remodels the chromatin and activates transcription of MyoD-target genes. Our data support an unprecedented two-step model by which pre-assembled BAF60c-MyoD complex directs recruitment of SWI/SNF to muscle loci in response to differentiation cues.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Sistema de Sinalização das MAP Quinases , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/fisiologia , Proteína MyoD/fisiologia , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular , Cromatina/genética , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA Helicases/fisiologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Células HeLa/metabolismo , Humanos , Camundongos , Complexos Multiproteicos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/química , Proteínas Musculares/genética , Mioblastos/metabolismo , Proteínas Nucleares/fisiologia , Fosforilação , Fosfotreonina/análise , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
5.
Mol Med ; 19: 79-87, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23552722

RESUMO

Previous work has established the existence of dystrophin-nitric oxide (NO) signaling to histone deacetylases (HDACs) that is deregulated in dystrophic muscles. As such, pharmacological interventions that target HDACs (that is, HDAC inhibitors) are of potential therapeutic interest for the treatment of muscular dystrophies. In this study, we explored the effectiveness of long-term treatment with different doses of the HDAC inhibitor givinostat in mdx mice--the mouse model of Duchenne muscular dystrophy (DMD). This study identified an efficacy for recovering functional and histological parameters within a window between 5 and 10 mg/kg/d of givinostat, with evident reduction of the beneficial effects with 1 mg/kg/d dosage. The long-term (3.5 months) exposure of 1.5-month-old mdx mice to optimal concentrations of givinostat promoted the formation of muscles with increased cross-sectional area and reduced fibrotic scars and fatty infiltration, leading to an overall improvement of endurance performance in treadmill tests and increased membrane stability. Interestingly, a reduced inflammatory infiltrate was observed in muscles of mdx mice exposed to 5 and 10 mg/kg/d of givinostat. A parallel pharmacokinetic/pharmacodynamic analysis confirmed the relationship between the effective doses of givinostat and the drug distribution in muscles and blood of treated mice. These findings provide the preclinical basis for an immediate translation of givinostat into clinical studies with DMD patients.


Assuntos
Carbamatos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Carbamatos/farmacologia , Células Cultivadas , Teste de Esforço , Fibrose/tratamento farmacológico , Fibrose/patologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Corrida
6.
Gels ; 8(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36005081

RESUMO

Here, we present a one-pot procedure for the preparation of hyaluronic acid (HA) sulfonated hydrogels in aqueous alkaline medium. The HA hydrogels were crosslinked using 1,4-butanedioldiglycidyl ether (BDDE) alone, or together with N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (Bes), as a safe sulfonating agent. Conditions for the simultaneous reaction of HA with BDDE and Bes were optimized and the resulting hydrogels were characterized under different reaction times (24, 72, and 96 h). The incorporation of sulfonic groups into the HA network was proven by elemental analysis and FTIR spectroscopy and its effect on water uptake was evaluated. Compared with the non-sulfonated sample, sulfonated gels showed improved mechanical properties, with their compressive modulus increased from 15 to 70 kPa, higher stability towards hyaluronidase, and better biocompatibility to 10T1/2 fibroblasts, especially after the absorption of collagen. As main advantages, the procedure described represents an easy and reproducible methodology for the fabrication of sulfonated hydrogels, which does not require toxic chemicals and/or solvents.

7.
Mol Med ; 17(5-6): 457-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21308150

RESUMO

Histone deacetylases inhibitors (HDACi) include a growing number of drugs that share the ability to inhibit the enzymatic activity of some or all the HDACs. Experimental and preclinical evidence indicates that these epigenetic drugs not only can be effective in the treatment of malignancies, inflammatory diseases and degenerative disorders, but also in the treatment of genetic diseases, such as muscular dystrophies. The ability of HDACi to counter the progression of muscular dystrophies points to HDACs as a crucial link between specific genetic mutations and downstream determinants of disease progression. It also suggests the contribution of epigenetic events to the pathogenesis of muscular dystrophies. Here we describe the experimental evidence supporting the key role of HDACs in the control of the transcriptional networks underlying the potential of dystrophic muscles either to activate compensatory regeneration or to undergo fibroadipogenic degeneration. Studies performed in mouse models of Duchenne muscular dystrophy (DMD) indicate that dystrophin deficiency leads to deregulated HDAC activity, which perturbs downstream networks and can be restored directly, by HDAC blockade, or indirectly, by reexpression of dystrophin. This evidence supports the current view that HDACi are emerging candidate drugs for pharmacological interventions in muscular dystrophies, and reveals unexpected common beneficial outcomes of pharmacological treatment or gene therapy.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/genética , Animais , Distrofina/metabolismo , Humanos , Camundongos , Distrofias Musculares/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
8.
Methods Mol Biol ; 1687: 231-256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29067668

RESUMO

Functional interactions between muscle (satellite) stem cells-MuSCs-and other cellular components of their niche (the fibro-adipogenic progenitors-FAPs) coordinate regeneration of injured as well as diseased skeletal muscles. These interactions are largely mediated by secretory networks, whose integrity is critical to determine whether repair occurs by compensatory regeneration leading to formation of new contractile fibers, or by maladaptive formation of fibrotic scars and fat infiltration. Here we provide the description of methods for isolation of FAPs and MuSCs from muscles of wild type and dystrophic mice, and protocols of cocultures as well as MuSC's exposure to FAP- derived exosomes. These methods and protocols can be exploited in murine models of acute muscle injury to investigate salient features of physiological repair, and in models of muscular diseases to identify dysregulated networks that compromise functional interactions between cellular components of the regeneration environment during disease progression. We predict that exporting these procedures to patient-derived muscle samples will contribute to advance our understanding of human skeletal myogenesis and related disorders.


Assuntos
Tecido Adiposo/citologia , Separação Celular/métodos , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia , Adipogenia/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Diferenciação Celular/genética , Fibrose/genética , Fibrose/patologia , Humanos , Camundongos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/metabolismo , Mioblastos/patologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia
9.
Sci Rep ; 8(1): 3448, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472596

RESUMO

Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7+ cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Epigênese Genética , Histona Desacetilases/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Histona Desacetilases/genética , Camundongos , Camundongos Knockout , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , Tamoxifeno/farmacologia
10.
Nat Commun ; 9(1): 3950, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262909

RESUMO

The endocannabinoid system refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. However, the potential role of endocannabinoids in skeletal muscle disorders remains unknown. Here we report the role of the endocannabinoid CB1 receptors in Duchenne's muscular dystrophy. In murine and human models, CB1 transcripts show the highest degree of expression at disease onset, and then decline overtime. Similar changes are observed for PAX7, a key regulator of muscle stem cells. Bioinformatics and biochemical analysis reveal that PAX7 binds and upregulates the CB1 gene in dystrophic more than in healthy muscles. Rimonabant, an antagonist of CB1, promotes human satellite cell differentiation in vitro, increases the number of regenerated myofibers, and prevents locomotor impairment in dystrophic mice. In conclusion, our study uncovers a PAX7-CB1 cross talk potentially exacerbating DMD and highlights the role of CB1 receptors as target for potential therapies.


Assuntos
Distrofia Muscular de Duchenne/genética , Receptor CB1 de Canabinoide/genética , Animais , Ácidos Araquidônicos/metabolismo , Sequência de Bases , Biomarcadores/metabolismo , Diglicerídeos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Células HEK293 , Humanos , Luciferases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Atividade Motora/efeitos dos fármacos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Regeneração/efeitos dos fármacos , Rimonabanto/farmacologia , Transcrição Gênica/efeitos dos fármacos
11.
Nat Commun ; 8: 13956, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067271

RESUMO

Polycomb proteins are critical chromatin modifiers that regulate stem cell differentiation via transcriptional repression. In skeletal muscle progenitors Enhancer of zeste homologue 2 (EZH2), the catalytic subunit of Polycomb Repressive Complex 2 (PRC2), contributes to maintain the chromatin of muscle genes in a repressive conformation, whereas its down-regulation allows the progression through the myogenic programme. Here, we show that p38α kinase promotes EZH2 degradation in differentiating muscle cells through phosphorylation of threonine 372. Biochemical and genetic evidence demonstrates that the MYOD-induced E3 ubiquitin ligase Praja1 (PJA1) is involved in regulating EZH2 levels upon p38α activation. EZH2 premature degradation in proliferating myoblasts is prevented by low levels of PJA1, its cytoplasmic localization and the lower activity towards unphosphorylated EZH2. Our results indicate that signal-dependent degradation of EZH2 is a prerequisite for satellite cells differentiation and identify PJA1 as a new player in the epigenetic control of muscle gene expression.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteína Quinase 14 Ativada por Mitógeno/genética , Desenvolvimento Muscular/genética , Células Satélites de Músculo Esquelético/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Fosforilação , Estabilidade Proteica , Proteólise , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
12.
Stem Cells Int ; 2016: 6093601, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839565

RESUMO

In the context of regenerative medicine, based on the potential of stem cells to restore diseased tissues, epigenetics is becoming a pivotal area of interest. Therapeutic interventions that promote tissue and organ regeneration have as primary objective the selective control of gene expression in adult stem cells. This requires a deep understanding of the epigenetic mechanisms controlling transcriptional programs in tissue progenitors. This review attempts to elucidate the principle epigenetic regulations responsible of stem cells differentiation. In particular we focus on the current understanding of the epigenetic networks that regulate differentiation of muscle progenitors by the concerted action of chromatin-modifying enzymes and noncoding RNAs. The novel exciting role of exosome-bound microRNA in mediating epigenetic information transfer is also discussed. Finally we show an overview of the epigenetic strategies and therapies that aim to potentiate muscle regeneration and counteract the progression of Duchenne Muscular Dystrophy (DMD).

13.
Epigenomics ; 6(5): 547-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431946

RESUMO

Duchenne muscular dystrophy (DMD) is a life-threatening genetic disease that currently has no available cure. A number of pharmacological strategies that aim to target events downstream of the genetic defect are currently under clinical investigation, and some of these are outlined in this report. In particular, we focus on the ability of histone deacetylase inhibitors to promote muscle regeneration and prevent the fibro-adipogenic degeneration of dystrophic mice. We describe the rationale behind the translation of histone deacetylase inhibitors into a clinical approach, which inspired the first clinical trial with an epigenetic drug as a potential therapeutic option for DMD patients.


Assuntos
Epigênese Genética , Inibidores de Histona Desacetilases/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Acetilação , Animais , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mutação , Regeneração/efeitos dos fármacos , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo
14.
EMBO Mol Med ; 5(4): 626-39, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23505062

RESUMO

HDAC inhibitors (HDACi) exert beneficial effects in mdx mice, by promoting endogenous regeneration; however, the cellular determinants of HDACi activity on dystrophic muscles have not been determined. We show that fibroadipogenic progenitors (FAP) influence the regeneration potential of satellite cells during disease progression in mdx mice and mediate HDACi ability to selectively promote regeneration at early stages of disease. FAPs from young mdx mice promote, while FAPs from old mdx mice repress, satellite cell-mediated formation of myotubes. In young mdx mice HDACi inhibited FAP adipogenic potential, while enhancing their ability to promote differentiation of adjacent satellite cells, through upregulation of the soluble factor follistatin. By contrast, FAPs from old mdx mice were resistant to HDACi-mediated inhibition of adipogenesis and constitutively repressed satellite cell-mediated formation of myotubes. We show that transplantation of FAPs from regenerating young muscles restored HDACi ability to increase myofibre size in old mdx mice. These results reveal that FAPs are key cellular determinants of disease progression in mdx mice and mediate a previously unappreciated stage-specific beneficial effect of HDACi in dystrophic muscles.


Assuntos
Adipogenia/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Músculos/fisiopatologia , Distrofias Musculares/tratamento farmacológico , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia , Fatores Etários , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Camundongos SCID , Músculos/efeitos dos fármacos , Distrofias Musculares/fisiopatologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
15.
Cell Cycle ; 10(2): 191-8, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21220942

RESUMO

Muscle regeneration relies on adult muscle stem (satellite) cells. Inflammatory cues released within the regenerative microenvironment, such as TNFα, instruct different components of the satellite cell niche toward specialized tasks by regulating specific subsets of genes in each individual cell type. However, how regeneration cues are deciphered and interpreted by the multitude of cell types within the regenerative environment is unknown. We have recently identified an inflammation-activated signaling, consisting of p38α-mediated recruitment of polycomb repressive complex 2 (PRC2) to the Pax7 promoter, in satellite cells. Here we show that p38α-PRC2 regulation of Pax7 expression is restricted to a discrete stage of satellite cell-mediated regeneration. In activated satellite cells, Pax7 locus shows a "bivalent" chromatin signature, with co-existence of H3-K27(3me) and H3-K4(3me), that appears to confer responsiveness to p38α-PRC2 signaling. p38α activation resolves bivalence to H3-K27(3me) which results in Pax7 repression, while p38α blockade promotes Pax7 expression by preventing PRC2-mediated H3-K27(3me) and leading to relative increase in H3-K4(3me). Interestingly, in satellite cell-derived myotubes Pax7 expression cannot be re-induced by p38α blockade, revealing a post-mitotic resistance of Pax7 gene to inflammatory cues. Likewise, in other cell types, such as muscle-derived fibroblasts, Pax7 locus is constitutively repressed by PRC2 and is unresponsive to p38α signaling. Finally, we show that Pax7 repression in embryonic stem cells is not directed by p38α signaling, although it is mediated by PRC2. This evidence indicates a cell type- and differentiation-stage specific control of Pax7 transcription by the p38α-PRC2.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fator de Transcrição PAX7/metabolismo , Proteínas Repressoras/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Diferenciação Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/metabolismo , Camundongos , Fator de Transcrição PAX7/genética , Proteínas do Grupo Polycomb , Células Satélites de Músculo Esquelético/citologia , Transdução de Sinais
16.
Cell Stem Cell ; 7(4): 455-69, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20887952

RESUMO

How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling--p38α and EZH2--invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate.


Assuntos
Fator de Transcrição PAX7/metabolismo , Músculo Quadríceps/fisiologia , Regeneração , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Epigênese Genética , Imunofluorescência , Técnicas de Silenciamento de Genes , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX7/genética , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , Músculo Quadríceps/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA