Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Toxicol Appl Pharmacol ; 306: 36-46, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377005

RESUMO

Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly.


Assuntos
Envelhecimento/fisiologia , Atorvastatina/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Atrofia Muscular/induzido quimicamente , Envelhecimento/metabolismo , Animais , Atorvastatina/sangue , Atorvastatina/farmacocinética , Cálcio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Creatina Quinase/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Fatores de Transcrição MEF2 , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos Wistar
2.
Am J Pathol ; 184(10): 2803-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25084345

RESUMO

Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.


Assuntos
Cálcio/metabolismo , Hipertensão/fisiopatologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Animais , Cafeína/metabolismo , Cálcio/análise , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Homeostase , Humanos , Masculino , Contração Muscular/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Fenótipo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
3.
J Pharmacol Exp Ther ; 340(2): 266-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22028392

RESUMO

The 2H-1,4-benzoxazine derivatives are novel drugs structurally similar to nucleotides; however, their actions on the pancreatic ß cell ATP-sensitive K+ (KATP) channel and on glucose disposal are unknown. Therefore, the effects of the linear/branched alkyl substituents and the aliphatic/aromatic rings at position 2 of the 2H-1,4-benzoxazine nucleus on the activity of these molecules against the pancreatic ß cell KATP channel and the Kir6.2ΔC36 subunit were investigated using a patch-clamp technique. The effects of these compounds on glucose disposal that followed glucose loading by intraperitoneal glucose tolerance test and on fasting glycemia were investigated in normal mice. The 2-n-hexyl analog blocked the KATP (IC50 = 10.1 × 10⁻9 M) and Kir6.2ΔC36 (IC50 = 9.6 × 10⁻9 M) channels, which induced depolarization. In contrast, the 2-phenyl analog was a potent opener (drug concentration needed to enhance the current by 50% = 0.04 × 10⁻9 M), which induced hyperpolarization. The ranked order of the potency/efficacy of the analog openers was 2-phenyl > 2-benzyl > 2-cyclohexylmethyl. The 2-phenylethyl and 2-isopropyl analogs were not effective as blockers/openers. The 2-n-hexyl (2-10 mg/kg) and 2-phenyl analogs (2-30 mg/kg) reduced and enhanced the glucose areas under the curves, respectively, after glucose loading in mice. These compounds did not affect the fasting glycemia as is observed with glibenclamide. The linear alkyl chain and the aromatic ring at position 2 of the 1,4-benzoxazine nucleus are the determinants, which confer the KATP channel blocking action with glucose-lowering effects and the opening action with increased glucose levels, respectively. The opening/blocking actions of these compounds mimic those that were observed with ATP and ADP. The results support the use of these compounds as novel antidiabetic drugs.


Assuntos
Benzoxazinas/farmacologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Canais KATP/agonistas , Canais KATP/antagonistas & inibidores , Animais , Área Sob a Curva , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Jejum/sangue , Glucose/farmacologia , Teste de Tolerância a Glucose , Glibureto/farmacologia , Células HEK293 , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Azida Sódica/farmacologia , Tolbutamida/farmacologia
4.
Chirality ; 22(3): 299-307, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19544349

RESUMO

New chiral mexiletine analogs were synthesized in their optically active forms and evaluated in vitro as use-dependent blockers of skeletal muscle sodium channels. Tests carried out on sodium currents of single muscle fibers of Rana esculenta demonstrated that all of them exerted a higher use-dependent block than mexiletine. The most potent analog, (S)-3-(2,6-dimethylphenoxy)-1-phenylpropan-1-amine (S)-(5), was six-fold more potent than (R)-Mex in producing a tonic block. As observed with mexiletine, the newly synthesized compounds exhibit modest enantioselective behavior, that is more evident in 3-(2,6-dimethylphenoxy)butan-1-amine (3).


Assuntos
Mexiletina/síntese química , Mexiletina/farmacologia , Músculos/efeitos dos fármacos , Miotonia/tratamento farmacológico , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Mexiletina/análogos & derivados
5.
Arch Pharm (Weinheim) ; 343(6): 325-32, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20509146

RESUMO

[2-(2-Aminopropoxy)-1,3-phenylene]dimethanol 1 and 4-(2-aminopropoxy)-3-(hydroxymethyl)-5-methylphenol 2, two dihydroxylated analogs of mexiletine - a well known class IB anti-arrhythmic drug - were synthesized and used as pharmacological tools to investigate the blocking-activity requirements of human skeletal muscle, voltage-gated sodium channel. The very low blocking activity shown by newly synthesized compounds corroborates the hypothesis that the presence of a phenolic group in the para-position to the aromatic moiety and/or benzylic hydroxyl groups on the aromatic moiety of local anesthetic-like drugs impairs either the transport to or the interaction with the binding site in the pore of Na(+) channels.


Assuntos
Antiarrítmicos/farmacologia , Mexiletina/análogos & derivados , Mexiletina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Antiarrítmicos/síntese química , Antiarrítmicos/química , Sítios de Ligação , Linhagem Celular , Desenho de Fármacos , Humanos , Hidroxilação , Mexiletina/síntese química , Mexiletina/química , Músculo Esquelético/metabolismo , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/genética , Relação Estrutura-Atividade
6.
Neuromuscul Disord ; 18(1): 74-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17825556

RESUMO

We investigated on the mechanism responsible for the reduced ATP-sensitive K(+)(K(ATP)) channel activity recorded from skeletal muscle of K(+)-depleted rats. Patch-clamp and gene expression measurements of K(ATP) channel subunits were performed. A down-regulation of the K(ATP) channel subunits Kir6.2(-70%) and SUR2A(-46%) in skeletal muscles of K(+)-depleted rats but no changes in the expression of Kir6.1, SUR1 and SUR2B subunits were observed. A reduced K(ATP) channel currents of -69.5% in K(+)-depleted rats was observed. The Kir6.2/SUR2A-B agonist cromakalim showed similar potency in activating the K(ATP) channels of normokalaemic and K(+)-depleted rats but reduced efficacy in K(+)-depleted rats. The Kir6.2/SUR1-2B agonist diazoxide activated K(ATP) channels in normokalaemic and K(+)-depleted rats with equal potency and efficacy. The down-regulation of the Kir6.2 explains the reduced K(ATP) channel activity in K(+)-depleted rats. The lower expression of SUR2A explains the reduced efficacy of cromakalim; preserved SUR1 expression accounts for the efficacy of diazoxide. Kir6.2/SUR2A deficiency is associated with impaired muscle function in K(+)-depleted rats and in hypoPP.


Assuntos
Canais KATP/deficiência , Músculo Esquelético/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Deficiência de Potássio/metabolismo , Animais , Cromakalim/farmacologia , Diazóxido/farmacologia , Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hipopotassêmica/metabolismo , Paralisia Periódica Hipopotassêmica/fisiopatologia , Canais KATP/efeitos dos fármacos , Canais KATP/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Músculo Esquelético/fisiopatologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Deficiência de Potássio/genética , Deficiência de Potássio/fisiopatologia , Ratos , Ratos Wistar , Sarcolema/efeitos dos fármacos , Sarcolema/genética , Sarcolema/metabolismo , Vasodilatadores/farmacologia
7.
Front Pharmacol ; 8: 907, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379434

RESUMO

Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.

8.
Neuropharmacology ; 113(Pt A): 206-216, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743929

RESUMO

Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified two newly-synthesized derivatives of tocainide, To040 and To042, with greatly enhanced potency and use-dependent behavior in inhibiting sodium currents in frog skeletal muscle fibers. The current study was performed to verify their potential as antimyotonic agents. Patch-clamp experiments show that both compounds, especially To042, are greatly more potent and use-dependent blockers of human skeletal muscle hNav1.4 channels compared to tocainide and mexiletine. Reduced effects on F1586C hNav1.4 mutant suggest that the compounds bind to the local anesthetic receptor, but that the increased hindrance and lipophilia of the N-substituent may further strengthen drug-receptor interaction and use-dependence. Compared to mexiletine, To042 was 120 times more potent to block hNav1.4 channels in a myotonia-like cellular condition and 100 times more potent to improve muscle stiffness in vivo in a previously-validated rat model of myotonia. To explore toxicological profile, To042 was tested on hERG potassium currents, motor coordination using rotarod, and C2C12 cell line for cytotoxicity. All these experiments suggest a satisfactory therapeutic index for To042. This study shows that, owing to a huge use-dependent block of sodium channels, To042 is a promising candidate drug for myotonia and possibly other membrane excitability disorders, warranting further preclinical and human studies.


Assuntos
Miotonia/prevenção & controle , Canal de Sódio Disparado por Voltagem NAV1.4/fisiologia , Tocainide/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/fisiologia , Humanos , Masculino , Mexiletina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Miotonia/fisiopatologia , Ratos , Ratos Wistar , Reflexo de Endireitamento/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Tocainide/efeitos adversos , Tocainide/análogos & derivados , Tocainide/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
9.
Neuromuscul Disord ; 16(1): 39-45, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16368240

RESUMO

Carbonic-anhydrase inhibitors are effective in channelopathies possibly by opening the Ca2+-activated-K+ channels. However, the in vivo effects of these drugs in K+-deficient rats, the animal model of familial hypokalaemic periodic paralysis(hypokalaemic-PP), are currently unknown. Measures of insulin-responses, serum electrolytes levels and patch-clamp experiments were therefore performed in K+ -deficient rats treated in vivo with dichlorphenamide (DCP), ethoxzolamide (ETX), hydrochlorthiazide (HCT), methazolamide (MTZ), bendroflumethiazide (BFT) and acetazolamide (ACTZ). Ten days treatments of K+-deficient rats with DCP, BFT, ETX and ACTZ (5.6 mg/kg per day) restored the serum [K+] to control values and prevented the insulin-induced paralysis. In ex vivo experiments, the carbonic-anhydrase inhibitors enhanced the activity of Ca2+-activated-K+ channels with the order of efficacy: ACTZ>BFT>ETX>DCP. In contrast, HCT and MTZ failed to stimulate the Ca2+-activated-K+ channels and to prevent the hypokalaemia and paralysis. At the concentration of 1mg/kg per day, all these drugs failed to ameliorate the hypokalaemic-PP symptoms. The activation of Ca2+-activated-K+ channel in addition to the mild diuretic effect explained the efficacy of ACTZ and DCP in K+ -deficient rats and in familial hypokalaemic-PP.


Assuntos
Inibidores da Anidrase Carbônica/uso terapêutico , Paralisia Periódica Hipopotassêmica/tratamento farmacológico , Músculos/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Paralisia Periódica Hipopotassêmica/etiologia , Paralisia Periódica Hipopotassêmica/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Músculos/fisiopatologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio Cálcio-Ativados/fisiologia , Deficiência de Potássio/complicações , Ratos , Ratos Wistar , Espectrofotometria/métodos
10.
Sci Rep ; 6: 20061, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26832124

RESUMO

Muscle atrophy is a widespread ill condition occurring in many diseases, which can reduce quality of life and increase morbidity and mortality. We developed a new method using non-invasive ultrasonography to measure soleus and gastrocnemius lateralis muscle atrophy in the hindlimb-unloaded rat, a well-accepted model of muscle disuse. Soleus and gastrocnemius volumes were calculated using the conventional truncated-cone method and a newly-designed sinusoidal method. For Soleus muscle, the ultrasonographic volume determined in vivo with either method was linearly correlated to the volume determined ex-vivo from excised muscles as muscle weight-to-density ratio. For both soleus and gastrocnemius muscles, a strong linear correlation was obtained between the ultrasonographic volume and the muscle fiber cross-sectional area determined ex-vivo on muscle cryosections. Thus ultrasonography allowed the longitudinal in vivo evaluation of muscle atrophy progression during hindlimb unloading. This study validates ultrasonography as a powerful method for the evaluation of rodent muscle atrophy in vivo, which would prove useful in disease models and therapeutic trials.


Assuntos
Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/fisiopatologia , Ultrassonografia , Animais , Masculino , Ratos , Ratos Wistar
11.
Neurology ; 86(22): 2100-8, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27164696

RESUMO

OBJECTIVE: We performed a clinical, functional, and pharmacologic characterization of the novel p.P1158L Nav1.4 mutation identified in a young girl presenting a severe myotonic phenotype. METHODS: Wild-type hNav1.4 channel and P1158L mutant were expressed in tsA201 cells for functional and pharmacologic studies using patch-clamp. RESULTS: The patient shows pronounced myotonia, slowness of movements, and generalized muscle hypertrophy. Because of general discomfort with mexiletine, she was given flecainide with satisfactory response. In vitro, mutant channels show a slower current decay and a rightward shift of the voltage dependence of fast inactivation. The voltage dependence of activation and slow inactivation were not altered. Mutant channels were less sensitive to mexiletine, whereas sensitivity to flecainide was not altered. The reduced inhibition of mutant channels by mexiletine was also observed using clinically relevant drug concentrations in a myotonic-like condition. CONCLUSIONS: Clinical phenotype and functional alterations of P1158L support the diagnosis of myotonia permanens. Impairment of fast inactivation is consistent with the possible role of the channel domain III S4-S5 loop in the inactivation gate docking site. The reduced sensitivity of P1158L to mexiletine may have contributed to the unsatisfactory response of the patient. The success of flecainide therapy underscores the usefulness of in vitro functional studies to help in the choice of the best drug for each individual.


Assuntos
Mutação , Miotonia Congênita/tratamento farmacológico , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Linhagem Celular , Criança , Diagnóstico Diferencial , Feminino , Flecainida/farmacologia , Flecainida/uso terapêutico , Humanos , Mexiletina/efeitos adversos , Mexiletina/farmacologia , Mexiletina/uso terapêutico , Miotonia Congênita/diagnóstico , Miotonia Congênita/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Testes Farmacogenômicos/métodos , Medicina de Precisão/métodos , Pesquisa Translacional Biomédica , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
12.
Neuromolecular Med ; 17(3): 285-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26007199

RESUMO

Myotonia congenita (MC) is an inherited muscle disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. Both recessive (Becker's disease) or dominant (Thomsen's disease) MC are caused by mutations in the CLCN1 gene encoding the voltage-dependent chloride ClC-1 channel, which is quite exclusively expressed in skeletal muscle. More than 200 CLCN1 mutations have been associated with MC. We provide herein a detailed clinical, molecular, and functional evaluation of four patients with recessive MC belonging to three different families. Four CLCN1 variants were identified, three of which have never been characterized. The c.244A>G (p.T82A) and c.1357C>T (p.R453W) variants were each associated in compound heterozygosity with c.568GG>TC (p.G190S), for which pathogenicity is already known. The new c.809G>T (p.G270V) variant was found in the homozygous state. Patch-clamp studies of ClC-1 mutants expressed in tsA201 cells confirmed the pathogenicity of p.G270V, which greatly shifts the voltage dependence of channel activation toward positive potentials. Conversely, the mechanisms by which p.T82A and p.R453W cause the disease remained elusive, as the mutated channels behave similarly to WT. The results also suggest that p.G190S does not exert dominant-negative effects on other mutated ClC-1 subunits. Moreover, we performed a RT-PCR quantification of selected ion channels transcripts in muscle biopsies of two patients. The results suggest gene expression alteration of sodium and potassium channel subunits in myotonic muscles; if confirmed, such analysis may pave the way toward a better understanding of disease phenotype and a possible identification of new therapeutic options.


Assuntos
Canais de Cloreto/genética , Miotonia Congênita/genética , Mutação Puntual , Adulto , Linhagem Celular , Canais de Cloreto/química , Canais de Cloreto/fisiologia , Cloretos/metabolismo , Consanguinidade , Sequência Conservada , Éxons/genética , Feminino , Genes Recessivos , Estudos de Associação Genética , Humanos , Ativação do Canal Iônico , Masculino , Músculo Esquelético/patologia , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Adulto Jovem
13.
ChemMedChem ; 10(3): 555-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25641779

RESUMO

Metaglidasen is a fibrate-like drug reported as a selective modulator of peroxisome proliferator-activated receptor γ (PPARγ), able to lower plasma glucose levels in the absence of the side effects typically observed with thiazolidinedione antidiabetic agents in current use. Herein we report an improved synthesis of metaglidasen's metabolically active form halofenic acid (R)-2 and that of its enantiomer (S)-2. The activity of the two stereoisomers was carefully examined on PPARα and PPARγ subtypes. As expected, both showed partial agonist activity toward PPARγ; the investigation of PPARα activity, however, led to unexpected results. In particular, (S)-2 was found to act as a partial agonist, whereas (R)-2 behaved as an antagonist. X-ray crystallographic studies with PPARγ were carried out to gain more insight on the molecular-level interactions and to propose a binding mode. Given the adverse effects provoked by fibrate drugs on skeletal muscle function, we also investigated the capacity of (R)-2 and (S)-2 to block conductance of the skeletal muscle membrane chloride channel. The results showed a more beneficial profile for (R)-2, the activity of which on skeletal muscle function, however, should not be overlooked in the ongoing clinical trials studying its long-term effects.


Assuntos
Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Animais , Cristalografia por Raios X , Células Hep G2 , Humanos , Ligantes , Masculino , Simulação de Acoplamento Molecular , Músculo Esquelético/metabolismo , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Ratos Wistar
14.
PLoS One ; 10(6): e0129686, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26066046

RESUMO

Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol) muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND), an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU). Mice were pre-treated for 2-weeks before HU and during the 2-weeks of HU. Muscle weight and total protein content were reduced in HU mice and a restoration of these parameters was found in ND-treated HU mice. The analysis of gene expression by real-time PCR demonstrates an increase of MuRF-1 during HU but minor involvement of other catabolic pathways. However, ND did not affect MuRF-1 expression. The evaluation of anabolic pathways showed no change in mTOR and eIF2-kinase mRNA expression, but the protein expression of the eukaryotic initiation factor eIF2 was reduced during HU and restored by ND. Moreover we found an involvement of regenerative pathways, since the increase of MyoD observed after HU suggests the promotion of myogenic stem cell differentiation in response to atrophy. At the same time, Notch-1 expression was down-regulated. Interestingly, the ND treatment prevented changes in MyoD and Notch-1 expression. On the contrary, there was no evidence for an effect of ND on the change of muscle phenotype induced by HU, since no effect of treatment was observed on the resting gCl, restCa and contractile properties in Sol muscle. Accordingly, PGC1α and myosin heavy chain expression, indexes of the phenotype transition, were not restored in ND-treated HU mice. We hypothesize that ND is unable to directly affect the phenotype transition when the specialized motor unit firing pattern of stimulation is lacking. Nevertheless, through stimulation of protein synthesis, ND preserves protein content and muscle weight, which may result advantageous to the affected skeletal muscle for functional recovery.


Assuntos
Atrofia Muscular/tratamento farmacológico , Nandrolona/farmacologia , Anabolizantes/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Contração Isométrica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/genética , Atrofia Muscular/fisiopatologia , Biossíntese de Proteínas/efeitos dos fármacos
15.
Neuromuscul Disord ; 13(9): 712-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14561494

RESUMO

The modulation of ATP-sensitive K+ channel (K(ATP)) by insulin plays a role in neuromuscular disorders associated to altered K+ homeostasis. However, the mechanisms by which insulin modulates K(ATP) channels are not known. Here, the insulin-dependent 3Na+/2K+ ATP-ase and Pi-3 kinase pathways were explored by using patch-clamp techniques. High and low affinity inhibition of K(ATP) channels by ouabain was observed in the insulin-stimulated and resting fibers, respectively. The 9A5 antibody directed against the alpha1-subunit of the pump inhibited the K(ATP) channel in the resting fibers but fails to inhibit it in the insulin-stimulated fibers. In contrast, the RT2NKATPabr, an alpha2-subunit specific antibody, inhibited the K(ATP) channels in the insulin-stimulated fibers failing to inhibit it in the resting fibers. The insulin-dependent stimulation of K(ATP) channel was prevented by Pi-3 kinase inhibitors Wortmannin and LY294002. In conclusion, insulin stimulating the 3Na+/2K+ ATP-ase activates K(ATP) channels through a membrane-delimited interaction thus controlling the K+ homeostasis. The Pi-3 kinase is the intracellular insulin signal linking the glucose homeostasis to the K(ATP) channel.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Androstadienos/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Cromonas/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Glibureto/farmacologia , Técnicas In Vitro , Masculino , Morfolinas/farmacologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Ouabaína/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/imunologia , Wortmanina
16.
Neuromuscul Disord ; 12 Suppl 1: S142-6, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12206808

RESUMO

The symptomatic pharmacological therapy of Duchenne dystrophy is poor, glucocorticoids being the sole compounds showing a certain efficacy, although their use is restricted by serious side effects. Pre-clinical trials of prompt-to-use drugs need reliable animal models of the human disease to predict drug effectiveness in patients. The exercised mdx mouse develops a typical pattern of muscle weakness in vivo, which has already been used as an index on which to evaluate drug effectiveness. We have demonstrated that the macroscopic conductance to chloride ion, an index of degeneration-regeneration events occurring in mdx mouse muscles, is specifically impaired by a chronic exercise protocol and is sensitive to the action of in vivo administered drugs acting either by stimulating regeneration (insulin-like growth factor-1 and steroids) or by counteracting calcium-induced degeneration or inflammation (Taurine and steroids). The monitoring of conductance to chloride ion also allows the evaluation of false positive compounds, effective on mouse strength in vivo but not at muscle level, and the functional correlation with other cellular parameters.


Assuntos
Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/metabolismo , Distrofina/deficiência , Distrofia Muscular de Duchenne/tratamento farmacológico , Corticosteroides/farmacologia , Animais , Progressão da Doença , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Modelos Animais , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Taurina/farmacologia
17.
Naunyn Schmiedebergs Arch Pharmacol ; 367(3): 318-27, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12644906

RESUMO

In striated fibers, the activity of mexiletine (Mex)-like sodium channel blockers is strongly modulated by the part of the molecule nearby the asymmetric carbon atom. A lipophilic aromatic phenyl group at this levels, as in 2-(2,6-dimethylphenoxy)-1-phenylethanamine (Me4), markedly increases drug potency, while an increased distance between the stereogenic center and the pharmacophore amino group, as in 3-(2,6-dimethylphenoxy)-2-methylpropan-1-amine (Me2), enhances the use-dependent behavior. In order to better evaluate the role of lipophilicity in drug potency in relation to the structural determinants for a specific binding, lipophilic analogs of Me2 and Me4 were synthesized. Compounds 3-[(2,6-dimethylphenyl)thio]-2-methylpropan-1-amine and 2-[(2,6-dimethylphenyl)thio]-1-phenylethanamine were obtained by isosteric substitution of the oxygen atom with sulfur, while the introduction of a chlorine atom in 4- position of the aryloxy ring lead to 3-(4-chloro-2,6-dimethylphenoxy)-2-methylpropan-1-amine and 2-(4-chloro-2,6-dimethylphenoxy)-1-phenylethanamine. The compounds were tested on nearly maximal Na(+) currents elicited with depolarizing steps at 0.3 Hz (tonic block) and 2-10 Hz (use-dependent block) by means of vaseline-gap voltage-clamp method on single frog muscle fibers.The augmented lipophilicity largely increase drug potency in Me2 analogues, the thio and chlorinated compounds being 20- and 10-fold more potent in producing the tonic block, respectively. However, both compounds showed a 2-fold lower use-dependent behavior vs. the high use-dependent Me2. Surprisingly, the same increase in lipophilicity brought about by the same substitutions, in the already high lipophilic and potent Me4 failed to further improve the potency, although both new analogs were more stereoselective than Me4. No correlation was found between logP and potency of all analogs tested. All compounds acted as inactivated channel blockers. In conclusion, lipophilicity differently influences drug profile based on the molecular determinants controlling drug-receptor interaction.


Assuntos
Mexiletina/análogos & derivados , Mexiletina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Mexiletina/química , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Técnicas de Patch-Clamp , Rana esculenta , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/metabolismo , Canais de Sódio/fisiologia , Estereoisomerismo , Relação Estrutura-Atividade
18.
Exp Neurol ; 255: 96-102, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24613829

RESUMO

Although the sodium channel blocker mexiletine is considered the first-line drug in myotonia, some patients experiment adverse effects, while others do not gain any benefit. Other antimyotonic drugs are thus needed to offer mexiletine alternatives. In the present study, we used a previously-validated rat model of myotonia congenita to compare six marketed sodium channel blockers to mexiletine. Myotonia was induced in the rat by injection of anthracen-9-carboxylic acid, a muscle chloride channel blocker. The drugs were given orally and myotonia was evaluated by measuring the time of righting reflex. The drugs were also tested on sodium currents recorded in a cell line transfected with the human skeletal muscle sodium channel hNav1.4 using patch-clamp technique. In vivo, carbamazepine and propafenone showed antimyotonic activity at doses similar to mexiletine (ED50 close to 5mg/kg); flecainide and orphenadrine showed greater potency (ED50 near 1mg/kg); lubeluzole and riluzole were the more potent (ED50 near 0.1mg/kg). The antimyotonic activity of drugs in vivo was linearly correlated with their potency in blocking hNav1.4 channels in vitro. Deviation was observed for propafenone and carbamazepine, likely due to pharmacokinetics and multiple targets. The comparison of the antimyotonic dose calculated in rats with the current clinical dose in humans strongly suggests that all the tested drugs may be used safely for the treatment of human myotonia. Considering the limits of mexiletine tolerability and the occurrence of non-responders, this study proposes an arsenal of alternative drugs, which may prove useful to increase the quality of life of individuals suffering from non-dystrophic myotonia. Further clinical trials are warranted to confirm these results.


Assuntos
Mexiletina/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Miotonia Congênita/tratamento farmacológico , Bloqueadores dos Canais de Sódio/uso terapêutico , Animais , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Modelos Animais de Doenças , Flecainida/farmacologia , Flecainida/uso terapêutico , Células HEK293 , Humanos , Mexiletina/farmacologia , Orfenadrina/farmacologia , Orfenadrina/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Propafenona/farmacologia , Propafenona/uso terapêutico , Ratos , Ratos Wistar , Riluzol/farmacologia , Riluzol/uso terapêutico , Bloqueadores dos Canais de Sódio/farmacologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico
19.
J Med Chem ; 57(6): 2589-600, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24568674

RESUMO

On the basis of a 3D-QSAR study, a new generation of tocainide analogues were designed and synthesized as voltage-gated skeletal muscle sodium channel blockers. Data obtained by screening new compounds by means of Hille-Campbell Vaseline gap voltage-clamp recordings showed that the elongation of the alkyl chain and the introduction of lipophilic and sterically hindered groups on the amino function enhance both potency and use-dependent block. The results provide additional indications about the structural requirement of pharmacophores for further increasing potency and state-dependent block and allowed us to identify a new tocainide analogue (6f) with a favorable pharmacodynamic profile to be proposed as a valid candidate for studies aimed at evaluating its usefulness in the treatment of myotonias.


Assuntos
Antiarrítmicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Tocainide/análogos & derivados , Tocainide/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Antiarrítmicos/síntese química , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Humanos , Modelos Moleculares , Técnicas de Patch-Clamp , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Ratos , Albumina Sérica/metabolismo , Canais de Sódio/efeitos dos fármacos , Relação Estrutura-Atividade , Tocainide/síntese química
20.
Neuropharmacology ; 65: 21-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23000075

RESUMO

The sodium channel blocker mexiletine is considered the first-line drug in myotonic syndromes, a group of muscle disorders characterized by membrane over-excitability. We previously showed that the ß-adrenoceptor modulators, clenbuterol and propranolol, block voltage-gated sodium channels in a manner reminiscent to mexiletine, whereas salbutamol and nadolol do not. We now developed a pharmacological rat model of myotonia congenita to perform in vivo preclinical test of antimyotonic drugs. Myotonia was induced by i.p. injection of 30 mg/kg of anthracene-9-carboxylic acid (9-AC), a muscle chloride channel blocker, and evaluated by measuring the time of righting reflex (TRR). The TRR was prolonged from <0.5 s in control conditions to a maximum of ∼4 s, thirty minutes after 9-AC injection, then gradually recovered in a few hours. Oral administration of mexiletine twenty minutes after 9-AC injection significantly hampered the TRR prolongation, with an half-maximum efficient dose (ED(50)) of 12 mg/kg. Both propranolol and clenbuterol produced a dose-dependent antimyotonic effect similar to mexiletine, with ED(50) values close to 20 mg/kg. Antimyotonic effects of 40 mg/kg mexiletine and propranolol lasted for 2 h. We also demonstrated, using patch-clamp methods, that both propranolol enantiomers exerted a similar block of skeletal muscle hNav1.4 channels expressed in HEK293 cells. The two enantiomers (15 mg/kg) also showed a similar antimyotonic activity in vivo in the myotonic rat. Among the drugs tested, the R(+)-enantiomer of propranolol may merit further investigation in humans, because it exerts antimyotonic effect in the rat model, while lacking of significant activity on the ß-adrenergic pathway. This study provides a new and useful in vivo preclinical model of myotonia congenita in order to individuate the most promising antimyotonic drugs to be tested in humans.


Assuntos
Agonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/uso terapêutico , Modelos Animais de Doenças , Miotonia/tratamento farmacológico , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Miotonia/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Wistar , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA