Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Immunol ; 20(5): 571-580, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936493

RESUMO

Fine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity. We found that the hyporesponsiveness of AlvMs to IL-4 depended upon the lung environment but was independent of the host microbiota or the lung extracellular matrix components surfactant protein D (SP-D) and mucin 5b (Muc5b). AlvMs showed severely dysregulated metabolism relative to that of cavity macrophages. After removal from the lungs, AlvMs regained responsiveness to IL-4 in a glycolysis-dependent manner. Thus, impaired glycolysis in the pulmonary niche regulates AlvM responsiveness during type 2 inflammation.


Assuntos
Inflamação/imunologia , Pulmão/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Animais , Inflamação/genética , Inflamação/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Larva/imunologia , Larva/fisiologia , Pulmão/metabolismo , Pulmão/patologia , Ativação de Macrófagos/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucina-5B/genética , Mucina-5B/imunologia , Mucina-5B/metabolismo , Nippostrongylus/imunologia , Nippostrongylus/fisiologia , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Infecções por Strongylida/genética , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia
2.
Clin Microbiol Rev ; 35(1): e0009421, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788127

RESUMO

Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.


Assuntos
COVID-19 , Coinfecção , Infecções Respiratórias , Vírus , Humanos , SARS-CoV-2
3.
EMBO J ; 36(16): 2404-2418, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28716804

RESUMO

Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN-I) in enabling this process. An IFN-I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN-I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1-/- mice were incapable of initiating Th2 responses in vivo These data demonstrate for the first time that the influence of IFN-I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/metabolismo , Células Th2/imunologia , Alérgenos/imunologia , Animais , Camundongos , Camundongos Knockout , Pyroglyphidae/imunologia , Receptor de Interferon alfa e beta/deficiência , Schistosoma mansoni/imunologia
4.
Immunol Cell Biol ; 99(1): 17-20, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107992

RESUMO

Fitzpatrick et al. describe how IgA secretion by B cells and plasma cells in the mengines is crucial for protection against microbial invasion into the brain and the CNS.


Assuntos
Linfócitos B , Plasmócitos , Encéfalo , Imunoglobulina A
5.
Eur J Immunol ; 49(7): 996-1000, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267552

RESUMO

Helminth infections are a global health burden in humans and livestock and are considered to be a major evolutionary driver of type 2 immunity (orchestrated by type 2 cytokines, e.g., IL-4 and IL-13). Upon infection, helminths cause substantial damage to mucosal tissues as they migrate within the host and elicit crucial protective immune mechanisms. Macrophages, essential innate cells, are known to adopt a specific activation status (termed M(IL-4)) in type 2 cytokine environments. Yet, the role of these macrophages in mediating protective immune/wound healing responses to helminths is unclear. Furthermore, macrophage subsets can be very heterogenous (linked to their differing cellular origins) and the relative role of these subsets in the context of M(IL-4) activation to helminth infection is unknown. An article by Rolot et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2019. 49: 1067-1081] uses a variety of transgenic murine strains to revise our understanding of the complexity of how these subsets undergo M(IL-4) activation and participate in wound healing responses in helminth infection. Here we highlight that consideration of different macrophage subsets in mucosal tissues is essential when evaluating the functional role of M(IL-4) macrophages.


Assuntos
Helmintíase , Helmintos , Esquistossomose , Animais , Citocinas , Humanos , Macrófagos , Camundongos , Monócitos
6.
J Pathol ; 245(3): 270-282, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603746

RESUMO

Epigenetic regulation plays a key role in the link between inflammation and cancer. Here we examine Mbd2, which mediates epigenetic transcriptional silencing by binding to methylated DNA. In separate studies the Mbd2-/- mouse has been shown (1) to be resistant to intestinal tumourigenesis and (2) to have an enhanced inflammatory/immune response, observations that are inconsistent with the links between inflammation and cancer. To clarify its role in tumourigenesis and inflammation, we used constitutive and conditional models of Mbd2 deletion to explore its epithelial and non-epithelial roles in the intestine. Using a conditional model, we found that suppression of intestinal tumourigenesis is due primarily to the absence of Mbd2 within the epithelia. Next, we demonstrated, using the DSS colitis model, that non-epithelial roles of Mbd2 are key in preventing the transition from acute to tumour-promoting chronic inflammation. Combining models revealed that prior to inflammation the altered Mbd2-/- immune response plays a role in intestinal tumour suppression. However, following inflammation the intestine converts from tumour suppressive to tumour promoting. To summarise, in the intestine the normal function of Mbd2 is exploited by cancer cells to enable tumourigenesis, while in the immune system it plays a key role in preventing tumour-enabling inflammation. Which role is dominant depends on the inflammation status of the intestine. As environmental interactions within the intestine can alter DNA methylation patterns, we propose that Mbd2 plays a key role in determining whether these interactions are anti- or pro-tumourigenic and this makes it a useful new epigenetic model for inflammation-associated carcinogenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colite/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Animais , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Metilação de DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Sulfato de Dextrana , Modelos Animais de Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes APC , Mucosa Intestinal/patologia , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Células Th1/metabolismo , Células Th1/patologia , Células Th2/metabolismo , Células Th2/patologia
8.
Nucleic Acids Res ; 44(7): 3031-44, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26657637

RESUMO

The mechanical properties of the cell nucleus change to allow cells to migrate, but how chromatin modifications contribute to nuclear deformability has not been defined. Here, we demonstrate that a major factor in this process involves epigenetic changes that underpin nuclear structure. We investigated the link between cell adhesion and epigenetic changes in T-cells, and demonstrate that T-cell adhesion to VCAM1 via α4ß1 integrin drives histone H3 methylation (H3K9me2/3) through the methyltransferase G9a. In this process, active G9a is recruited to the nuclear envelope and interacts with lamin B1 during T-cell adhesion through α4ß1 integrin. G9a activity not only reorganises the chromatin structure in T-cells, but also affects the stiffness and viscoelastic properties of the nucleus. Moreover, we further demonstrated that these epigenetic changes were linked to lymphocyte movement, as depletion or inhibition of G9a blocks T-cell migration in both 2D and 3D environments. Thus, our results identify a novel mechanism in T-cells by which α4ß1 integrin signaling drives specific chromatin modifications, which alter the physical properties of the nucleus and thereby enable T-cell migration.


Assuntos
Movimento Celular , Núcleo Celular/fisiologia , Epigênese Genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Integrina alfa4beta1/metabolismo , Linfócitos/imunologia , Animais , Adesão Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/química , Células HEK293 , Histonas/metabolismo , Humanos , Células Jurkat , Metilação , Camundongos Endogâmicos C57BL , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
J Pediatr Orthop ; 37(7): e436-e439, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719545

RESUMO

BACKGROUND: Internet searches and social media utilization in health care has exploded over the past 5 years, and patients utilize it to gain information on their health conditions and physicians. Social media has the potential to serve as a means for education, communication, and marketing in all health care specialties. Physicians are sometimes reluctant to engage because of concerns of privacy, litigation, and lack of experience with this modality. Many surgical subspecialties have capitalized on social media but no study to date has examined the specific footprint of pediatric orthopaedic surgeons in this realm. We aim to quantify the utilization of individual social media platforms by pediatric orthopaedic surgeons, and identify any differences between private and hospital-based physicians, but also regional differences. METHODS: Using the Pediatric Orthopaedic Society of North America Member Directory, each active member's social media presence was reviewed through an Internet search. Members were stratified on the basis of practice model and geographic location. Individual Internet searches, social media sites, and number of publications were reviewed for social media presence. RESULTS: Of 987 Pediatric Orthopaedic Society of North America members, 95% had a professional webpage, 14.8% a professional Facebook page, 2.2% a professional Twitter page, 36.8% a LinkedIn profile, 25.8% a ResearchGate profile, 33% at least 1 YouTube. Hospital-based physicians had a lower mean level of utilization of social media compared with their private practice peers, and a higher incidence of Pubmed publications. Private practice physicians had double the social media utilization. Regional differences reveal that practicing Pediatric Orthopaedists in the Northeast had increased utilization of ResearchGate and LinkedIn and the West had the lowest mean social media utilization levels. CONCLUSIONS: The rapid expansion of social media usage by patients and their family members is an undeniable force affecting the health care industry. The Internet and social media platforms provide all physicians with a means to educate patients, collaborate with colleagues, and promote their practice and areas of interest. Our survey indicates that pediatric orthopaedic surgeons may be underutilizing their potential social media presence. LEVELS OF EVIDENCE: Level IV.


Assuntos
Ortopedia , Pediatria , Mídias Sociais/estatística & dados numéricos , Criança , Comunicação em Saúde/métodos , Humanos , Comportamento de Busca de Informação , América do Norte
10.
Immunol Cell Biol ; 94(4): 400-10, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26657145

RESUMO

Dendritic cells (DCs) are the key initiators of T-helper (Th) 2 immune responses against the parasitic helminth Schistosoma mansoni. Although the liver is one of the main sites of antigen deposition during infection with this parasite, it is not yet clear how distinct DC subtypes in this tissue respond to S. mansoni antigens in vivo, or how the liver microenvironment might influence DC function during establishment of the Th2 response. In this study, we show that hepatic DC subsets undergo distinct activation processes in vivo following murine infection with S. mansoni. Conventional DCs (cDCs) from schistosome-infected mice upregulated expression of the costimulatory molecule CD40 and were capable of priming naive CD4(+) T cells, whereas plasmacytoid DCs (pDCs) upregulated expression of MHC class II, CD86 and CD40 but were unable to support the expansion of either naive or effector/memory CD4(+) T cells. Importantly, in vivo depletion of pDCs revealed that this subset was dispensable for either maintenance or regulation of the hepatic Th2 effector response during acute S. mansoni infection. Our data provides strong evidence that S. mansoni infection favors the establishment of an immunogenic, rather than tolerogenic, liver microenvironment that conditions cDCs to initiate and maintain Th2 immunity in the context of ongoing antigen exposure.


Assuntos
Células Dendríticas/imunologia , Fígado/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Células Th2/imunologia , Animais , Antígenos de Helmintos/imunologia , Diferenciação Celular , Células Cultivadas , Células Dendríticas/parasitologia , Fígado/parasitologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
11.
Int Immunol ; 27(11): 589-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25899567

RESUMO

The archetypal Th2 cytokine IL-4 has previously been shown to alternatively activate murine macrophages and, more recently, dendritic cells (DCs) both in vitro and in vivo. IL-4 has also been shown to induce Aldh1a2 (aldehyde dehydrogenase 1a2) expression in murine macrophages recruited to the peritoneal cavity. However, the influence of IL-4 on DC Aldh1a2 induction in vivo has not yet been addressed. In this work, we found that DCs show enhanced aldehyde dehydrogenase enzyme activity in vivo, which led us to investigate the impact of the vitamin A metabolite all-trans retinoic acid (RA) on DC alternative activation and function. Antagonism of RA receptors reduced production of resistin-like molecule alpha by DCs responding to IL-4, while addition of exogenous RA enhanced production of this marker of alternative activation. Functionally, RA increased DC induction of CD4(+) T-cell IL-10, while reducing CD4(+) T-cell IL-4 and IL-13, revealing a previously unidentified role for RA in regulating the ability of alternatively activated DCs to influence Th2 polarization.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Imunomodulação/efeitos dos fármacos , Tretinoína/farmacologia , Aldeído Desidrogenase/metabolismo , Animais , Antígenos de Superfície/metabolismo , Células Dendríticas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-4/farmacologia , Camundongos , Fenótipo , Receptores do Ácido Retinoico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
Infect Immun ; 83(4): 1418-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25624353

RESUMO

The effect that multiple percutaneous exposures to Schistosoma larvae has on the development of early CD4+ lymphocyte reactivity is unclear, yet it is important in the context of humans living in areas where schistosomiasis is endemic. In a murine model of multiple infections, we show that exposure of mice to repeated doses (4×) of Schistosoma mansoni cercariae, compared to a single dose (1×), results in CD4+ T cell hyporesponsiveness within the skin-draining lymph nodes (sdLN), manifested as reduced CD4+ cell proliferation and cytokine production. FoxP3+ CD4+ regulatory T cells were present in similar numbers in the sdLN of 4× and 1× mice and thus are unlikely to have a role in effecting hyporesponsiveness. Moreover, anergy of the CD4+ cell population from 4× mice was slight, as proliferation was only partly circumvented through the in vitro addition of exogenous interleukin-2 (IL-2), and the in vivo blockade of the regulatory molecule PD1 had a minimal effect on restoring responsiveness. In contrast, IL-10 was observed to be critical in mediating hyporesponsiveness, as CD4+ cells from the sdLN of 4× mice deficient for IL-10 were readily able to proliferate, unlike those from 4× wild-type cohorts. CD4+ cells from the sdLN of 4× mice exhibited higher levels of apoptosis and cell death, but in the absence of IL-10, there was significantly less cell death. Combined, our data show that IL-10 is a key factor in the development of CD4+ T cell hyporesponsiveness after repeated parasite exposure involving CD4+ cell apoptosis.


Assuntos
Apoptose/imunologia , Interleucina-10/imunologia , Schistosoma mansoni/imunologia , Esquistossomose/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Feminino , Tolerância Imunológica/imunologia , Interleucina-10/genética , Interleucina-2/farmacologia , Larva/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Esquistossomose/parasitologia
13.
Eur J Immunol ; 44(6): 1835-41, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24578067

RESUMO

Th1 and Th2 cell fates are traditionally viewed as mutually exclusive, but recent work suggests that these lineages may be more plastic than previously thought. When isolating splenic CD4(+) T cells from mice infected with the parasitic helminth Schistosoma mansoni, we observed a defined population of IFN-γ/IL-4 double-positive cells. These IFN-γ(+) IL-4(+) cells showed differences in DNA methylation at the Ifng and Il4 loci when compared with IFN-γ(+) IL-4(-) (Th1) and IFN-γ(-) IL-4(+) (Th2) cells, demonstrating that they represent a distinct effector cell population. IFN-γ(+) IL-4(+) cells also displayed a discrete DNA methylation pattern at a CpG island within the body of the Gata3 gene, which encodes the master regulator of Th2 identity. DNA methylation at this region correlated with decreased Gata3 levels, suggesting a possible role in controlling Gata3 expression. These data provide important insight into the molecular mechanisms behind the co-existence of Th1 and Th2 characteristics.


Assuntos
Metilação de DNA/imunologia , Interferon gama/imunologia , Interleucina-4/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Ilhas de CpG/imunologia , Feminino , Fator de Transcrição GATA3/imunologia , Regulação da Expressão Gênica/imunologia , Camundongos , Esquistossomose mansoni/patologia , Células Th1/patologia , Células Th2/patologia
14.
Proc Natl Acad Sci U S A ; 109(25): 9977-82, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22660926

RESUMO

Interleukin-4 is a cytokine widely known for its role in CD4(+) T cell polarization and its ability to alternatively activate macrophage populations. In contrast, the impact of IL-4 on the activation and function of dendritic cells (DCs) is poorly understood. We report here that DCs respond to IL-4 both in vitro and in vivo by expression of multiple alternative activation markers with a different expression pattern to that of macrophages. We further demonstrate a central role for DC IL-4Rα expression in the optimal induction of IFNγ responses in vivo in both Th1 and Th2 settings, through a feedback loop in which IL-4 promotes DC secretion of IL-12. Finally, we reveal a central role for RELMα during T-cell priming, establishing that its expression by DCs is critical for optimal IL-10 and IL-13 promotion in vitro and in vivo. Together, these data highlight the significant impact that IL-4 and RELMα can have on DC activation and function in the context of either bacterial or helminth pathogens.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Polaridade Celular , Células Dendríticas/imunologia , Animais , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Técnicas In Vitro , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
15.
Nat Rev Microbiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918447

RESUMO

Human fungal infections are a historically neglected area of disease research, yet they cause more than 1.5 million deaths every year. Our understanding of the pathophysiology of these infections has increased considerably over the past decade, through major insights into both the host and pathogen factors that contribute to the phenotype and severity of these diseases. Recent studies are revealing multiple mechanisms by which fungi modify and manipulate the host, escape immune surveillance and generate complex comorbidities. Although the emergence of fungal strains that are less susceptible to antifungal drugs or that rapidly evolve drug resistance is posing new threats, greater understanding of immune mechanisms and host susceptibility factors is beginning to offer novel immunotherapeutic options for the future. In this Review, we provide a broad and comprehensive overview of the pathobiology of human fungal infections, focusing specifically on pathogens that can cause invasive life-threatening infections, highlighting recent discoveries from the pathogen, host and clinical perspectives. We conclude by discussing key future challenges including antifungal drug resistance, the emergence of new pathogens and new developments in modern medicine that are promoting susceptibility to infection.

16.
PLoS Pathog ; 7(3): e1001323, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21445234

RESUMO

Infection of the mammalian host by schistosome larvae occurs via the skin, although nothing is known about the development of immune responses to multiple exposures of schistosome larvae, and/or their excretory/secretory (E/S) products. Here, we show that multiple (4x) exposures, prior to the onset of egg laying by adult worms, modulate the skin immune response and induce CD4(+) cell hypo-responsiveness in the draining lymph node, and even modulate the formation of hepatic egg-induced granulomas. Compared to mice exposed to a single infection (1x), dermal cells from multiply infected mice (4x), were less able to support lymph node cell proliferation. Analysis of dermal cells showed that the most abundant in 4x mice were eosinophils (F4/80(+)MHC-II(-)), but they did not impact the ability of antigen presenting cells (APC) to support lymphocyte proliferation to parasite antigen in vitro. However, two other cell populations from the dermal site of infection appear to have a critical role. The first comprises arginase-1(+), Ym-1(+) alternatively activated macrophage-like cells, and the second are functionally compromised MHC-II(hi) cells. Through the administration of exogenous IL-12 to multiply infected mice, we show that these suppressive myeloid cell phenotypes form as a consequence of events in the skin, most notably an enrichment of IL-4 and IL-13, likely resulting from an influx of RELMα-expressing eosinophils. We further illustrate that the development of these suppressive dermal cells is dependent upon IL-4Rα signalling. The development of immune hypo-responsiveness to schistosome larvae and their effect on the subsequent response to the immunopathogenic egg is important in appreciating how immune responses to helminth infections are modulated by repeated exposure to the infective early stages of development.


Assuntos
Derme/imunologia , Células Mieloides/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Dermatopatias Parasitárias/imunologia , Células Th2/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Proliferação de Células , Citocinas/genética , Citocinas/imunologia , Derme/parasitologia , Derme/patologia , Eosinófilos/imunologia , Eosinófilos/patologia , Feminino , Linfonodos/imunologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Mieloides/patologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Esquistossomose mansoni/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Dermatopatias Parasitárias/genética , Dermatopatias Parasitárias/parasitologia
18.
Virulence ; 14(1): 2172264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36752587

RESUMO

Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.


Assuntos
Aspergilose , Aspergilose Pulmonar , Humanos , Aspergillus fumigatus , Virulência , Aspergilose/microbiologia , Fatores de Virulência
19.
Microbiol Spectr ; 11(3): e0113523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158741

RESUMO

Fc-C-type lectin receptor (Fc-CTLRs) probes are soluble chimeric proteins constituted of the extracellular domain of a CTLR fused with the constant fraction (Fc) of the human IgG. These probes are useful tools to study the interaction of CTLRs with their ligands, with applications similar to those of antibodies, often in combination with widely available fluorescent antibodies targeting the Fc fragment (anti-hFc). In particular, Fc-Dectin-1 has been extensively used to study the accessibility of ß-glucans at the surface of pathogenic fungi. However, there is no universal negative control for Fc-CTLRs, making the distinction of specific versus nonspecific binding difficult. We describe here 2 negative controls for Fc-CTLRs: a Fc-control constituting of only the Fc portion, and a Fc-Dectin-1 mutant predicted to be unable to bind ß-glucans. Using these new probes, we found that while Fc-CTLRs exhibit virtually no nonspecific binding to Candida albicans yeasts, Aspergillus fumigatus resting spores strongly bind Fc-CTLRs in a nonspecific manner. Nevertheless, using the controls we describe here, we were able to demonstrate that A. fumigatus spores expose a low amount of ß-glucan. Our data highlight the necessity of appropriate negative controls for experiments involving Fc-CTLRs probes. IMPORTANCE While Fc-CTLRs probes are useful tools to study the interaction of CTLRs with ligands, their use is limited by the lack of appropriate negative controls in assays involving fungi and potentially other pathogens. We have developed and characterized 2 negative controls for Fc-CTLRs assays: Fc-control and a Fc-Dectin-1 mutant. In this manuscript, we characterize the use of these negative controls with zymosan, a ß-glucan containing particle, and 2 human pathogenic fungi, Candida albicans yeasts and Aspergillus fumigatus conidia. We show that A. fumigatus conidia nonspecifically bind Fc-CTLRs probes, demonstrating the need for appropriate negative controls in such assays.


Assuntos
Lectinas Tipo C , beta-Glucanas , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Fungos/metabolismo , Leveduras , Esporos Fúngicos/metabolismo , beta-Glucanas/metabolismo
20.
Discov Immunol ; 2(1): kyad009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545765

RESUMO

The lung is a dynamic mucosal surface constantly exposed to a variety of immunological challenges including harmless environmental antigens, pollutants, and potentially invasive microorganisms. Dysregulation of the immune system at this crucial site is associated with a range of chronic inflammatory conditions including asthma and Chronic Pulmonary Obstructive Disease (COPD). However, due to its relative inaccessibility, our fundamental understanding of the human lung immune compartment is limited. To address this, we performed flow cytometric immune phenotyping of human lung tissue and matched blood samples that were isolated from 115 donors undergoing lung tissue resection. We provide detailed characterization of the lung mononuclear phagocyte and T cell compartments, demonstrating clear phenotypic differences between lung tissue cells and those in peripheral circulation. Additionally, we show that CD103 expression demarcates pulmonary T cells that have undergone recent TCR and IL-7R signalling. Unexpectedly, we discovered that the immune landscape from asthmatic or COPD donors was broadly comparable to controls. Our data provide a much-needed expansion of our understanding of the pulmonary immune compartment in both health and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA