Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4205, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864084

RESUMO

Clouds regulate the Greenland Ice Sheet's surface energy balance through the competing effects of shortwave radiation shading and longwave radiation trapping. However, the relative importance of these effects within Greenland's narrow ablation zone, where nearly all meltwater runoff is produced, remains poorly quantified. Here we use machine learning to merge MODIS, CloudSat, and CALIPSO satellite observations to produce a high-resolution cloud radiative effect product. For the period 2003-2020, we find that a 1% change in cloudiness has little effect (±0.16 W m-2) on summer net radiative fluxes in the ablation zone because the warming and cooling effects of clouds compensate. However, by 2100 (SSP5-8.5 scenario), radiative fluxes in the ablation zone will become more than twice as sensitive (±0.39 W m-2) to changes in cloudiness due to reduced surface albedo. Accurate representation of clouds will therefore become increasingly important for forecasting the Greenland Ice Sheet's contribution to global sea-level rise.

2.
Sci Adv ; 5(3): eaav3738, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30854432

RESUMO

Greenland Ice Sheet mass loss has recently increased because of enhanced surface melt and runoff. Since melt is critically modulated by surface albedo, understanding the processes and feedbacks that alter albedo is a prerequisite for accurately forecasting mass loss. Using satellite imagery, we demonstrate the importance of Greenland's seasonally fluctuating snowline, which reduces ice sheet albedo and enhances melt by exposing dark bare ice. From 2001 to 2017, this process drove 53% of net shortwave radiation variability in the ablation zone and amplified ice sheet melt five times more than hydrological and biological processes that darken bare ice itself. In a warmer climate, snowline fluctuations will exert an even greater control on melt due to flatter ice sheet topography at higher elevations. Current climate models, however, inaccurately predict snowline elevations during high melt years, portending an unforeseen uncertainty in forecasts of Greenland's runoff contribution to global sea level rise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA