Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 20(10): e2306168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880910

RESUMO

Coronary artery disease (CAD) is the most common type of heart disease and represents the leading cause of death in both men and women worldwide. Early detection of CAD is crucial for decreasing mortality, prolonging survival, and improving patient quality of life. Herein, a non-invasive is described, nanoparticle-based diagnostic technology which takes advantages of proteomic changes in the nano-bio interface for CAD detection. Nanoparticles (NPs) exposed to biological fluids adsorb on their surface a layer of proteins, the "protein corona" (PC). Pathological changes that alter the plasma proteome can directly result in changes in the PC. By forming disease-specific PCs on six NPs with varying physicochemical properties, a PC-based sensor array is developed for detection of CAD using specific PC pattern recognition. While the PC of a single NP may not provide the required specificity, it is reasoned that multivariate PCs across NPs with different surface chemistries, can provide the desirable information to selectively discriminate the condition under investigation. The results suggest that such an approach can detect CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of 82.5%. These new findings demonstrate the potential of PC-based sensor array detection systems for clinical use.


Assuntos
Doença da Artéria Coronariana , Nanopartículas , Coroa de Proteína , Feminino , Humanos , Coroa de Proteína/química , Doença da Artéria Coronariana/diagnóstico , Proteômica , Qualidade de Vida , Nanopartículas/química , Proteoma
2.
J Neurochem ; 165(6): 827-841, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36978267

RESUMO

There are a number of G-protein-coupled receptors (GPCRs) that are considered "orphan receptors" because the information on their known ligands is incomplete. Yet, these receptors are important targets to characterize, as the discovery of their ligands may lead to potential new therapies. GPR75 was recently deorphanized because at least two ligands appear to bind to it, the chemokine CCL5 and the eicosanoid 20-Hydroxyeicosatetraenoic acid. Recent reports suggest that GPR75 may play a role in regulating insulin secretion and obesity. However, little is known about the function of this receptor in the brain. To study the function of GPR75, we have generated a knockout (KO) mouse model of this receptor and we evaluated the role that this receptor plays in the adult hippocampus by an array of histological, proteomic, and behavioral endpoints. Using RNAscope® technology, we identified GPR75 puncta in several Rbfox3-/NeuN-positive cells in the hippocampus, suggesting that this receptor has a neuronal expression. Proteomic analysis of the hippocampus in 3-month-old GPR75 KO animals revealed that several markers of synapses, including synapsin I and II are downregulated compared with wild type (WT). To examine the functional consequence of this down-regulation, WT and GPR75 KO mice were tested on a hippocampal-dependent behavioral task. Both contextual memory and anxiety-like behaviors were significantly altered in GPR75 KO, suggesting that GPR75 plays a role in hippocampal activity.


Assuntos
Medo , Hipocampo , Receptores Acoplados a Proteínas G , Animais , Camundongos , Hipocampo/metabolismo , Ligantes , Camundongos Knockout , Proteômica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
3.
Biochem Biophys Res Commun ; 676: 36-41, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37481941

RESUMO

In cancer research today, one of the major challenges is the eradication of cancer stem cells (CSCs) within the tumor mass. These cells play a crucial role in initiating, growing, and maintaining the tumor. Evidence has demonstrated the presence and significance of CSCs in the development and progression of osteosarcoma (OS). However, our understanding of the specific markers for OS stem cells remains limited. In this study, we aim to identify distinct biomarkers for this cell population by conducting a proteomic analysis comparing OS stem cells to their non-stem counterparts. Our investigation focuses on a particular cell line called 3AB-OS, which exhibits stem-like characteristics, and its differentiated parental cell line, MG63. Through this research, we discovered 63 proteins exclusively expressed in 3AB-OS cells. Applying an in silico bioinformatics approach, we determined that the majority of these proteins are associated with RNA metabolism. Additionally, we identified a potential correlation between the insulin-like growth factor-binding proteins (IGF2BPs) signaling pathway and the tumorigenic and stemness features observed in 3AB-OS cells.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Proteômica , Linhagem Celular Tumoral , Osteossarcoma/patologia , Proliferação de Células/genética , Neoplasias Ósseas/patologia , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica
4.
Small ; 15(34): e1902333, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31250985

RESUMO

Incapability of effective cross-talk with biological environments has partly impaired the in vivo functionality of nanoparticles (NPs). Homing, biodistribution, and function of NPs could be engineered through regulating their interactions with in vivo niches. Inspired by communications in biological systems, endowing a "biological identity" to synthetic NPs is one approach to control their biodistribution, and immunonegotiation profiles. This synthetic-biological combination is referred to as biohybrid NPs, which comprise both i) engineerable, readily producible, and trackable synthetic NPs as well as ii) biological moieties with the capability to cross-talk with immunological barriers. Here, the latest understanding on the in vivo interactions of NPs, biological barriers they face, and emerging methods for quantitative measurements of NPs' biodistribution are reviewed. Some key biomolecules that have emerged as negotiators with the immune system in the context of cancer and autoimmunity, and their inspirations on biohybrid NPs are introduced. Critical design considerations for efficient cross-talk between NPs and innate and adaptive immunity followed by hybridization methods are also discussed. Finally, clinical translation challenges and future perspectives regarding biohybrid NPs are discussed.


Assuntos
Nanopartículas/química , Animais , Técnicas de Transferência de Genes , Humanos , Imunidade/efeitos dos fármacos , Nanopartículas/toxicidade , Fagócitos/citologia , Fagócitos/efeitos dos fármacos , Medicina de Precisão , Distribuição Tecidual/efeitos dos fármacos
5.
J Neurochem ; 137(2): 287-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26826352

RESUMO

Human immunodeficiency virus-1 (HIV) promotes synaptic simplification and neuronal apoptosis, and causes neurological impairments termed HIV-associated neurological disorders. HIV-associated neurotoxicity may be brought about by acute and chronic mechanisms that still remain to be fully characterized. The HIV envelope glycoprotein gp120 causes neuronal degeneration similar to that observed in HIV-associated neurocognitive disorders subjects. This study was undertaken to discover novel mechanisms of gp120 neurotoxicity that could explain how the envelope protein promotes neurite pruning. Gp120 has been shown to associate with various intracellular organelles as well as microtubules in neurons. We then analyzed lysates of neurons exposed to gp120 with liquid chromatography mass spectrometry for potential protein interactors. We found that one of the proteins interacting with gp120 is tubulin ß-3 (TUBB3), a major component of neuronal microtubules. We then tested the hypothesis that gp120 binds to neuronal microtubules. Using surface plasmon resonance, we confirmed that gp120 binds with high affinity to neuronal-specific TUBB3. We have also identified the binding site of gp120 to TUBB3. We then designed a small peptide (Helix-A) that displaced gp120 from binding to TUBB3. To determine whether this peptide could prevent gp120-mediated neurotoxicity, we cross-linked Helix-A to mesoporous silica nanoparticles (Helix-A nano) to enhance the intracellular delivery of the peptide. We then tested the neuroprotective property of Helix-A nano against three strains of gp120 in rat cortical neurons. Helix-A nano prevented gp120-mediated neurite simplification as well as neuronal loss. These data propose that gp120 binding to TUBB3 could be another mechanism of gp120 neurotoxicity. We propose a novel direct mechanism of human immunodeficiency virus neurotoxicity. Our data show that the viral protein gp120 binds to neuronal specific tubulin ß-3 and blocks microtubule transport. Displacing gp120 from binding to tubulin by a small peptide prevents gp120-mediated neuronal loss. Our study reveals a novel target for developing adjunct therapies against viral infection that promotes neurocognitive disorders.


Assuntos
Sítios de Ligação/fisiologia , Proteína gp120 do Envelope de HIV/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Cromatografia Líquida , Embrião de Mamíferos , Proteína gp120 do Envelope de HIV/genética , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Ressonância de Plasmônio de Superfície
6.
J Neurochem ; 129(6): 1002-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24548049

RESUMO

Phenylketonuria (PKU), if not detected and treated in newborns, causes severe neurological dysfunction and cognitive and behavioral deficiencies. Despite the biochemical characterization of PKU, the molecular mechanisms underlying PKU-associated brain dysfunction remain poorly understood. The aim of this study was to gain insights into the pathogenesis of this neurological damage by analyzing protein expression profiles in brain tissue of Black and Tan BRachyury-PahEnu2 mice (a mouse model of PKU). We compared the cerebral protein expression of homozygous PKU mice with that of their heterozygous counterparts using two-dimensional difference gel electrophoresis analysis, and identified 21 differentially expressed proteins, four of which were over-expressed and 17 under-expressed. An in silico bioinformatic approach indicated that protein under-expression was related to neuronal differentiation and dendritic growth, and to such neurological disorders as progressive motor neuropathy and movement disorders. Moreover, functional annotation analyses showed that some identified proteins were involved in oxidative metabolism. To further investigate the proteins involved in the neurological damage, we validated two of the proteins that were most strikingly under-expressed, namely, Syn2 and Dpysl2, which are involved in synaptic function and neurotransmission. We found that Glu2/3 and NR1 receptor subunits were over-expressed in PKU mouse brain. Our results indicate that differential expression of these proteins may be associated with the processes underlying PKU brain dysfunction, namely, decreased synaptic plasticity and impaired neurotransmission. We identified a set of proteins whose expression is affected by hyperphenylalaninemia. We think that phenylketonuria (PKU) brain dysfunction also depends on reduced Syn2 and Dpysl2 levels, increased Glu2/3 and NR1 levels, and decreased Pkm, Ckb, Pgam1 and Eno1 levels. These findings finally confirm that alteration in synaptic function, in transmission and in energy metabolism underlie brain damage provoked by hyperphenylalaninemias.


Assuntos
Química Encefálica/fisiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Fenilcetonúrias/genética , Fenilcetonúrias/patologia , Biossíntese de Proteínas/fisiologia , Animais , Biomarcadores , Western Blotting , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Simulação por Computador , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Redes Reguladoras de Genes , Camundongos , Fenilalanina/metabolismo , Fenilalanina/fisiologia , Espectrometria de Massas em Tandem
7.
Int J Cardiol ; 409: 132184, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759798

RESUMO

BACKGROUND: Superficial plaque erosion causes many acute coronary syndromes. However, mechanisms of plaque erosion remain poorly understood, and we lack directed therapeutics for thrombotic complication. Human eroded plaques can harbor neutrophil extracellular traps (NETs) that propagate endothelial damage at experimental arterial lesions that recapitulate superficial erosion. Clonal Hematopoiesis of Indeterminate Potential (CHIP) denotes age-related clonal expansion of bone marrow-derived cells harboring somatic mutations in the absence of overt hematological disease. CHIP heightens the risk of cardiovascular disease, with the greatest increase seen in individuals with JAK2V617F. Neutrophils from mice and humans with JAK2V617F undergo NETosis more readily than Jak2WT (wild-type) cells. We hypothesized that JAK2V617F, by increasing propensity to NETosis, exacerbates aspects of superficial erosion. METHODS AND RESULTS: We generated Jak2V617F and Jak2WT mice with heterozygous Jak2V617F in myeloid cells. We induced areas of denuded endothelium that recapitulate features of superficial erosion and assessed endothelial integrity, cellular composition of the erosion, thrombosis rates, and response to ruxolitinib, a clinically available JAK1/2 inhibitor, in relation to genotype. Following experimental erosion, Jak2V617F mice have greater impairment of endothelial barrier function and increased rates of arterial thrombosis. Neointimas in Jak2V617F mice exhibit increased apoptosis, NETosis, and platelet recruitment. Jak2V617F mice treated with ruxolitinib show increased endothelial continuity and reduced apoptosis in the neointima comparable to levels in Jak2WT. CONCLUSIONS: These observations provide new mechanistic insight into the pathophysiology of superficial erosion, the heightened risk for myocardial infarction in JAK2V617F CHIP, and point the way to personalized therapeutics based on CHIP status.


Assuntos
Hematopoiese Clonal , Janus Quinase 2 , Trombose , Animais , Janus Quinase 2/genética , Camundongos , Trombose/genética , Hematopoiese Clonal/genética , Mutação , Endotélio Vascular/patologia , Masculino , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Humanos
8.
Nat Commun ; 15(1): 4739, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834613

RESUMO

The overexpression of the ecotropic viral integration site-1 gene (EVI1/MECOM) marks the most lethal acute myeloid leukemia (AML) subgroup carrying chromosome 3q26 abnormalities. By taking advantage of the intersectionality of high-throughput cell-based and gene expression screens selective and pan-histone deacetylase inhibitors (HDACis) emerge as potent repressors of EVI1. To understand the mechanism driving on-target anti-leukemia activity of this compound class, here we dissect the expression dynamics of the bone marrow leukemia cells of patients treated with HDACi and reconstitute the EVI1 chromatin-associated co-transcriptional complex merging on the role of proliferation-associated 2G4 (PA2G4) protein. PA2G4 overexpression rescues AML cells from the inhibitory effects of HDACis, while genetic and small molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in patient-derived leukemia xenografts. This study positions PA2G4 at the crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and urges the use of HDACis-based combination therapies in patients with 3q26 AML.


Assuntos
Cromossomos Humanos Par 3 , Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Proteína do Locus do Complexo MDS1 e EVI1 , Proteogenômica , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromossomos Humanos Par 3/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteogenômica/métodos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Proteomics ; 13(22): 3293-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24106197

RESUMO

Cancer stem cell characterization represents a breakthrough in cancer research. Despite evidence showing the existence and the role of cancer stem cells in osteosarcoma (OS) onset and progression, little is known about their specific surface phenotype. To address this issue, we carried out a cytometric analysis with an antibody-array comprising 245 membrane proteins comparing the stem and differentiated OS cells. As experimental model, we chose the stem-like cell line 3aminobenzamide-OS and its parental, differentiated, cell line MG63. We identified 50 differentially expressed, 23 homogeneously expressed, and 172 not expressed proteins in the two cell line models, thus defining a surface protein signature specific for each of them. Furthermore, we selected ERK1/2 (p44/42 mitogen-activated protein kinases) as a potential pathway correlated with processes that characterize tumorigenic potential and stemness of 3aminobenzamide-OS cells.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Membrana/análise , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/metabolismo , Proteoma/análise , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/química , Osteossarcoma/química , Mapas de Interação de Proteínas/fisiologia , Proteoma/química , Proteoma/metabolismo , Proteômica/métodos
10.
Proteomics ; 13(7): 1220-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23412928

RESUMO

The biochemical phenotype of cells affected by ribosomal stress has not yet been studied in detail. Here we report a comparative proteomic analysis of cell lines silenced for the RPS19 gene versus cell lines transfected with scramble shRNA cells performed using the DIGE technology integrated to bioinformatics tools. Importantly, to achieve the broadest possible understanding of the outcome, we carried out two independent DIGE experiments using two different pH ranges, thus, allowing the identification of 106 proteins. Our data revealed the deregulation of proteins involved in cytoskeleton reorganization, PTMs, and translation process. A subset (26.9%) of these proteins is translated from transcripts that include internal ribosome entry site motifs. This supports the hypothesis that during ribosomal stress translation of specific messenger RNAs is altered.


Assuntos
Proteômica/métodos , Ribossomos/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Densitometria , Eletroforese em Gel de Poliacrilamida , Humanos , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas
11.
Cancer ; 119(4): 729-38, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23027178

RESUMO

BACKGROUND: Despite the well recognized expression of the cell surface markers cluster of differentiation 44 (homing cell adhesion molecule) and CD133 (Prominin 1) on human colorectal cancer stem cells (CCSCs), these molecules do not appear to be effective targets for stem cell-directed therapies. Because the surface marker CD66c (also known as carcinoembryonic antigen-related cell adhesion molecule 6) has demonstrated promise as a therapeutic target in pancreatic malignancy, the authors evaluated its potential as a target for stem cell-directed treatment of colorectal cancer. METHODS: First, the authors characterized CD66c expression by flow cytometry and immunohistochemistry in colon cancer samples and in normal colon tissues. Then, the coexpression of CD66c and CD133 was evaluated on putative CCSCs. CD66c expression also was measured in stem cell-enriched colon spheres. Finally, the effects of small-interfering RNA-mediated CD66c silencing on the in vitro and in vivo growth of Caco2 colon cancer cells were evaluated. RESULTS: CD66c expression was significantly higher in colon cancers than in contiguous normal colon tissues and paralleled cancer stage. CD66c was absent in CD133-positive cells that were isolated from normal colon, whereas its expression was brightest (CD66c(bright) ) in CD133-positive cells from colon cancer samples. In vitro experiments demonstrated that colon spheres were considerably enriched in a CD66c(bright) population in a fashion comparable to the enrichment observed in fresh liver metastases. In vitro proliferation and clonogenic potential were hampered when CD66c was silenced in Caco2 cells. Finally, in vivo xenograft experiments demonstrated that CD66c silencing almost completely abrogated the tumorigenic potential of Caco2 cells. CONCLUSIONS: CD66c(bright) expression was associated with colon cancer stem cells and CD66c silencing blocked tumor growth, thereby opening the way to a potential new treatment for colon cancer.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Neoplasias Colorretais/patologia , Antígeno AC133 , Animais , Antígenos CD/genética , Biomarcadores Tumorais/metabolismo , Células CACO-2 , Moléculas de Adesão Celular/genética , Separação Celular/métodos , Colo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Inativação Gênica , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Peptídeos/metabolismo , Valores de Referência , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biochem Biophys Res Commun ; 436(1): 1-5, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23685143

RESUMO

Alternative splicing in mRNA maturation has emerged as a major field of study also because of its implications in various diseases. The SR proteins play an important role in the regulation of this process. Evidence indicates that SRp20 (SFSR3), the smallest member of the SR protein family, is involved in numerous biological processes. Here we review the state-of-the-art of knowledge about the SR proteins, in particular SRp20, in terms of its function and misregulation in human diseases including cancer also in view of its potential as a therapeutic target.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Arginina/química , Humanos , Dados de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos , Serina/química , Fatores de Processamento de Serina-Arginina
13.
Proteomics ; 12(12): 2045-59, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623141

RESUMO

The cancer stem cell (CSC) theory represents a breakthrough in cancer research. We characterized the protein pattern of CSCs to identify specific intracellular pathways in this subpopulation of tumor cells. We studied colon CSCs using two different colon cancer cell lines: CaCo-2 and HCT-116. Putative CSCs were separated from non-CSCs by flow cytometry using CD133 as stemness marker. Total protein extracts of CD133+ cells were then compared to protein extracts of CD133- cells by 2D DIGE. The protein spots differentially expressed in the two subpopulations of cells were analyzed by mass spectrometry. Bioinformatics analysis of the identified proteins indicated alteration of two main processes: energy metabolism and the Wnt pathway. Interestingly, we observed upregulation of the splicing factor SRp20, a newly identified target gene of the Wnt/ß-catenin pathway, and we demonstrated a direct cause-effect relationship between Wnt pathway activation and the increased SRp20 expression. Our results also show that SRp20 influences cell proliferation, which suggests it plays a role in the tumorigenicity of CD133+ cells. In conclusion, activation of the Wnt pathway in CD133+ cells and upregulation of SRp20, which is implicated in tumorigenesis, raises the possibility of a sequential series of molecular events occurring in connection with this process.


Assuntos
Antígenos CD/metabolismo , Neoplasias do Colo/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Via de Sinalização Wnt/fisiologia , Antígeno AC133 , Antígenos CD/química , Western Blotting , Células CACO-2 , Processos de Crescimento Celular/genética , Neoplasias do Colo/química , Neoplasias do Colo/patologia , Eletroforese em Gel Bidimensional , Citometria de Fluxo , Inativação Gênica , Glicoproteínas/química , Células HCT116 , Humanos , Células-Tronco Neoplásicas/química , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/química , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Reprodutibilidade dos Testes , Fatores de Processamento de Serina-Arginina , Regulação para Cima
14.
Nanoscale ; 14(5): 1606-1620, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35076049

RESUMO

Nanoparticles exposed to biological fluids such as blood, quickly interact with their surrounding milieu resulting in a biological coating that results in large part as a function of the physicochemical properties of the nanomaterial. The large nanoparticle surface area-to-volume ratio further augments binding of biological molecules and the resulting biomolecular or protein corona, once thought of as problematic biofouling, is now viewed as a rich source of biological information that can guide the development of nanomedicines. This review gives an overview of the utility of the protein corona in proteomic profiling and discusses how a better understanding of nano-bio interactions can accelerate the clinical translation of nanomedicines and facilitate the identification of disease-specific biomarkers. With the FDA requirement of the protein corona analysis of nanoparticles in place, it is envisaged that analyzing the protein corona of nanoparticles on a case-by-case basis can provide highly valuable nano-bio interface information that can aid and improve their clinical translation.


Assuntos
Nanopartículas , Coroa de Proteína , Biomarcadores , Nanomedicina , Proteômica
15.
Small Methods ; 6(8): e2200289, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35768282

RESUMO

Biomimetic approaches utilize natural cell membrane-derived nanovesicles to camouflage nanoparticles to circumvent some limitations of nanoscale materials. This emergent cell membrane-coating technology is inspired by naturally occurring intercellular interactions, to efficiently guide nanostructures to the desired locations, thereby increasing both therapeutic efficacy and safety. In addition, the intrinsic biocompatibility of cell membranes allows the crossing of biological barriers and avoids elimination by the immune system. This results in enhanced blood circulation time and lower toxicity in vivo. Macrophages are the major phagocytic cells of the innate immune system. They are equipped with a complex repertoire of surface receptors, enabling them to respond to biological signals, and to exhibit a natural tropism to inflammatory sites and tumorous tissues. Macrophage cell membrane-functionalized nanosystems are designed to combine the advantages of both macrophages and nanomaterials, improving the ability of those nanosystems to reach target sites. Recent studies have demonstrated the potential of these biomimetic nanosystems for targeted delivery of drugs and imaging agents to tumors, inflammatory, and infected sites. The present review covers the preparation and biomedical applications of macrophage cell membrane-coated nanosystems. Challenges and future perspectives in the development of these membrane-coated nanosystems are addressed.


Assuntos
Materiais Biomiméticos , Nanopartículas , Nanoestruturas , Materiais Biomiméticos/química , Membrana Celular/química , Macrófagos/metabolismo , Nanopartículas/química , Nanoestruturas/uso terapêutico , Preparações Farmacêuticas/análise
16.
Adv Healthc Mater ; 10(2): e2000948, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169521

RESUMO

As the population affected by Alzheimer's disease (AD) grows, so does the need for a noninvasive and accurate diagnostic tool. Current research reveals that AD pathogenesis begins as early as decades before clinical symptoms. The unique properties of nanoparticles (NPs) may be exploited to develop noninvasive diagnostics for early detection of AD. After exposure of NPs to biological fluids, the NP surface is altered by an unbiased but selective and reproducible adsorption of biomolecules commonly referred to as the biomolecular corona or protein corona (PC). The discovery that the plasma proteome may be differentially altered during health and disease leads to the concept of disease-specific PCs. Herein, the disease-specific PCs formed around NPs in a multi-NPs platform are employed to successfully identify subtle changes in plasma protein patterns and detect AD (>92% specificity and ≈100% sensitivity). Similar discrimination power is achieved using banked plasma samples from a cohort of patients several years prior to their diagnosis with AD. With the nanoplatform's analytic ability to analyze pathological proteomic changes into a disease-specific identifier, this promising, noninvasive technology with implications for early detection and intervention could benefit not only patients with AD but other diseases as well.


Assuntos
Doença de Alzheimer , Nanopartículas , Coroa de Proteína , Doença de Alzheimer/diagnóstico , Humanos , Proteoma , Proteômica
17.
Exploration (Beijing) ; 1(2): 20210011, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37323213

RESUMO

Bone defects pose a heavy burden on patients, orthopedic surgeons, and public health resources. Various pathological conditions cause bone defects including trauma, tumors, inflammation, osteoporosis, and so forth. Auto- and allograft transplantation have been developed as the most commonly used clinic treatment methods, among which autologous bone grafts are the golden standard. Yet the repair of bone defects, especially large-volume defects in the geriatric population or those complicated with systemic disease, is still a challenge for regenerative medicine from the clinical perspective. The fast development of biomaterials and nanomedicine favors the emergence and promotion of efficient bone regeneration therapies. In this review, we briefly summarize the progress of novel biomaterial and nanomedical approaches to bone regeneration and then discuss the current challenges that still hinder their clinical applications in treating bone defects.

18.
Cardiovasc Res ; 117(13): 2652-2663, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751034

RESUMO

AIMS: Recent evidence suggests that 'vulnerable plaques', which have received intense attention as underlying mechanism of acute coronary syndromes over the decades, actually rarely rupture and cause clinical events. Superficial plaque erosion has emerged as a growing cause of residual thrombotic complications of atherosclerosis in an era of increased preventive measures including lipid lowering, antihypertensive therapy, and smoking cessation. The mechanisms of plaque erosion remain poorly understood, and we currently lack validated effective diagnostics or therapeutics for superficial erosion. Eroded plaques have a rich extracellular matrix, an intact fibrous cap, sparse lipid, and few mononuclear cells, but do harbour neutrophil extracellular traps (NETs). We recently reported that NETs amplify and propagate the endothelial damage at the site of arterial lesions that recapitulate superficial erosion in mice. We showed that genetic loss of protein arginine deiminase (PAD)-4 function inhibited NETosis and preserved endothelial integrity. The current study used systemic administration of targeted nanoparticles to deliver an agent that limits NETs formation to probe mechanisms of and demonstrate a novel therapeutic approach to plaque erosion that limits endothelial damage. METHODS AND RESULTS: We developed Collagen IV-targeted nanoparticles (Col IV NP) to deliver PAD4 inhibitors selectively to regions of endothelial cell sloughing and collagen IV-rich basement membrane exposure. We assessed the binding capability of the targeting ligand in vitro and evaluated Col IV NP targeting to areas of denuded endothelium in vivo in a mouse preparation that recapitulates features of superficial erosion. Delivery of the PAD4 inhibitor GSK484 reduced NET accumulation at sites of intimal injury and preserved endothelial continuity. CONCLUSIONS: NPs directed to Col IV show selective uptake and delivery of their payload to experimentally eroded regions, illustrating their translational potential. Our results further support the role of PAD4 and NETs in superficial erosion.


Assuntos
Aterosclerose/tratamento farmacológico , Colágeno Tipo IV/metabolismo , Portadores de Fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Armadilhas Extracelulares/metabolismo , Nanopartículas , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Animais , Aterosclerose/enzimologia , Aterosclerose/patologia , Membrana Basal/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Colágeno Tipo IV/química , Modelos Animais de Doenças , Composição de Medicamentos , Liberação Controlada de Fármacos , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos Knockout para ApoE , Nanotecnologia , Placa Aterosclerótica , Ligação Proteica , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Propriedades de Superfície , Distribuição Tecidual
19.
Nanomaterials (Basel) ; 10(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233748

RESUMO

Recent studies on coronavirus infectious disease 2019 (COVID-19) pathophysiology indicated the cytokine release syndrome induced by the virus as the main cause of mortality. Patients with severe COVID-19 infection present a systemic hyper inflammation that can lead to lung and multi-organ injuries. Among the most recent treatments, corticosteroids have been identified to be effective in mitigating these catastrophic effects. Our group has recently developed leukocyte-derived nanovesicles, termed leukosomes, able to target in vivo the inflamed vasculature associated with pathological conditions including cancer, cardiovascular diseases, and sepsis. Herein, to gain insights on the anti-inflammatory properties of leukosomes, we investigated their ability to reduce uncontrolled inflammation in a lethal model of lipopolysaccharide (LPS)-induced endotoxemia, recapitulating the cytokine storm syndrome observed in COVID-19 infection after encapsulating dexamethasone. Treated animals showed a significant survival advantage and an improved immune response resolution, as demonstrated by a cytokine array analysis of pro- and anti-inflammatory cytokines, chemokines, and other immune-relevant markers. Our results showed that leukosomes enhance the therapeutic activity of dexamethasone and better control the inflammatory response compared to the free drug. Such an approach could be useful for the development of personalized therapies in the treatment of hyperinflammation related to infectious diseases, including the ones caused by COVID-19.

20.
Nanoscale ; 12(8): 4935-4944, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32051994

RESUMO

It is becoming increasingly accepted that various diseases have a capacity to alter the composition of plasma proteins. This alteration in protein composition may consequently change the targeting capacity of nanoparticles (NPs). In this study, the impact of a model targeting ligand's (i.e., Transferrin; Tf) concentration in human plasma on the targeting capacity of gold NPs (Au NPs), pre-conjugated with Tf, is investigated. Our findings demonstrate that the protein corona formation by both healthy and Tf depleted human plasma diminishes the targeting efficacy of Au NPs within human cancer cells despite a preservation of targeting ability by plasma with excess Tf (10-fold). Moreover, the plasma samples obtained from patients with various Tf levels (e.g., thalassemia major, sickle cell anemia, aplastic anemia, and iron deficiency anemia) have affected the accessibility of the targeting Tf in the corona layer and subsequently affected their targeting ability, which emphasizes the critical role of disease-specific protein corona on the efficacy of Au NPs. Ultimately, variations of protein concentration (e.g., due to disease occurrence and progress) in plasma affect its recruiting in corona formation, and in turn, affect the targeting and therapeutic efficacies of Au NPs.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas Metálicas/química , Plasma/química , Coroa de Proteína/química , Transferrina/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA