Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 19(1): e1011080, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634147

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) causes the inflammatory and angiogenic endothelial cell neoplasm, Kaposi's sarcoma (KS). We previously demonstrated that the KSHV Kaposin B (KapB) protein promotes inflammation via the disassembly of cytoplasmic ribonucleoprotein granules called processing bodies (PBs). PBs modify gene expression by silencing or degrading labile messenger RNAs (mRNAs), including many transcripts that encode inflammatory or angiogenic proteins associated with KS disease. Although our work implicated PB disassembly as one of the causes of inflammation during KSHV infection, the precise mechanism used by KapB to elicit PB disassembly was unclear. Here we reveal a new connection between the degradative process of autophagy and PB disassembly. We show that both latent KSHV infection and KapB expression enhanced autophagic flux via phosphorylation of the autophagy regulatory protein, Beclin. KapB was necessary for this effect, as infection with a recombinant virus that does not express the KapB protein did not induce Beclin phosphorylation or autophagic flux. Moreover, we showed that PB disassembly mediated by KSHV or KapB, depended on autophagy genes and the selective autophagy receptor NDP52/CALCOCO2 and that the PB scaffolding protein, Pat1b, co-immunoprecipitated with NDP52. These studies reveal a new role for autophagy and the selective autophagy receptor NDP52 in promoting PB turnover and the concomitant synthesis of inflammatory molecules during KSHV infection.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Autofagia , Células Endoteliais/metabolismo , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/genética , Corpos de Processamento , Proteínas Nucleares/metabolismo
2.
PLoS Pathog ; 18(12): e1011041, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36534661

RESUMO

Stress granules (SGs) are cytoplasmic condensates that often form as part of the cellular antiviral response. Despite the growing interest in understanding the interplay between SGs and other biological condensates and viral replication, the role of SG formation during coronavirus infection remains poorly understood. Several proteins from different coronaviruses have been shown to suppress SG formation upon overexpression, but there are only a handful of studies analyzing SG formation in coronavirus-infected cells. To better understand SG inhibition by coronaviruses, we analyzed SG formation during infection with the human common cold coronavirus OC43 (HCoV-OC43) and the pandemic SARS-CoV2. We did not observe SG induction in infected cells and both viruses inhibited eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and SG formation induced by exogenous stress. Furthermore, in SARS-CoV2 infected cells we observed a sharp decrease in the levels of SG-nucleating protein G3BP1. Ectopic overexpression of nucleocapsid (N) and non-structural protein 1 (Nsp1) from both HCoV-OC43 and SARS-CoV2 inhibited SG formation. The Nsp1 proteins of both viruses inhibited arsenite-induced eIF2α phosphorylation, and the Nsp1 of SARS-CoV2 alone was sufficient to cause a decrease in G3BP1 levels. This phenotype was dependent on the depletion of cytoplasmic mRNA mediated by Nsp1 and associated with nuclear accumulation of the SG-nucleating protein TIAR. To test the role of G3BP1 in coronavirus replication, we infected cells overexpressing EGFP-tagged G3BP1 with HCoV-OC43 and observed a significant decrease in virus replication compared to control cells expressing EGFP. The antiviral role of G3BP1 and the existence of multiple SG suppression mechanisms that are conserved between HCoV-OC43 and SARS-CoV2 suggest that SG formation may represent an important antiviral host defense that coronaviruses target to ensure efficient replication.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/metabolismo , COVID-19/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Grânulos de Estresse
3.
PLoS Pathog ; 18(8): e1010724, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998203

RESUMO

A dysregulated proinflammatory cytokine response is characteristic of severe coronavirus infections caused by SARS-CoV-2, yet our understanding of the underlying mechanism responsible for this imbalanced immune response remains incomplete. Processing bodies (PBs) are cytoplasmic membraneless ribonucleoprotein granules that control innate immune responses by mediating the constitutive decay or suppression of mRNA transcripts, including many that encode proinflammatory cytokines. PB formation promotes turnover or suppression of cytokine RNAs, whereas PB disassembly corresponds with the increased stability and/or translation of these cytokine RNAs. Many viruses cause PB disassembly, an event that can be viewed as a switch that rapidly relieves cytokine RNA repression and permits the infected cell to respond to viral infection. Prior to this submission, no information was known about how human coronaviruses (CoVs) impacted PBs. Here, we show SARS-CoV-2 and the common cold CoVs, OC43 and 229E, induced PB loss. We screened a SARS-CoV-2 gene library and identified that expression of the viral nucleocapsid (N) protein from SARS-CoV-2 was sufficient to mediate PB disassembly. RNA fluorescent in situ hybridization revealed that transcripts encoding TNF and IL-6 localized to PBs in control cells. PB loss correlated with the increased cytoplasmic localization of these transcripts in SARS-CoV-2 N protein-expressing cells. Ectopic expression of the N proteins from five other human coronaviruses (OC43, MERS, 229E, NL63 and SARS-CoV) did not cause significant PB disassembly, suggesting that this feature is unique to SARS-CoV-2 N protein. These data suggest that SARS-CoV-2-mediated PB disassembly contributes to the dysregulation of proinflammatory cytokine production observed during severe SARS-CoV-2 infection.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Citocinas , Humanos , Hibridização in Situ Fluorescente , Corpos de Processamento , RNA , SARS-CoV-2
4.
PLoS Pathog ; 18(9): e1010832, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121863

RESUMO

There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting accumulation of full-length viral genomes, subgenomic RNAs and structural proteins. In ectopic expression models, we observed that 6-TG increased the electrophoretic mobility of Spike from diverse betacoronaviruses, matching the effects of enzymatic removal of N-linked oligosaccharides from Spike in vitro. SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on production of lentiviruses pseudotyped with SARS-CoV-2 Spike, yielding pseudoviruses deficient in Spike and unable to infect ACE2-expressing cells. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. Using biochemical and genetic approaches we demonstrated that 6-TG is a pro-drug that must be converted to the nucleotide form by hypoxanthine phosphoribosyltransferase 1 (HPRT1) to achieve antiviral activity. This nucleotide form has been shown to inhibit small GTPases Rac1, RhoA, and CDC42; however, we observed that selective chemical inhibitors of these GTPases had no effect on Spike processing or accumulation. By contrast, the broad GTPase agonist ML099 countered the effects of 6-TG, suggesting that the antiviral activity of 6-TG requires the targeting of an unknown GTPase. Overall, these findings suggest that small GTPases are promising targets for host-targeted antivirals.


Assuntos
COVID-19 , Proteínas Monoméricas de Ligação ao GTP , Pró-Fármacos , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Antivirais/farmacologia , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Tioguanina , Vírion/metabolismo
5.
J Med Virol ; 96(6): e29692, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804172

RESUMO

To achieve a virological cure for hepatitis B virus (HBV), innovative strategies are required to target the covalently closed circular DNA (cccDNA) genome. Guanine-quadruplexes (G4s) are a secondary structure that can be adopted by DNA and play a significant role in regulating viral replication, transcription, and translation. Antibody-based probes and small molecules have been developed to study the role of G4s in the context of the human genome, but none have been specifically made to target G4s in viral infection. Herein, we describe the development of a humanized single-domain antibody (S10) that can target a G4 located in the PreCore (PreC) promoter of the HBV cccDNA genome. MicroScale Thermophoresis demonstrated that S10 has a strong nanomolar affinity to the PreC G4 in its quadruplex form and a structural electron density envelope of the complex was determined using Small-Angle X-ray Scattering. Lentiviral transduction of S10 into HepG2-NTCP cells shows nuclear localization, and chromatin immunoprecipitation coupled with next-generation sequencing demonstrated that S10 can bind to the HBV PreC G4 present on the cccDNA. This research validates the existence of a G4 in HBV cccDNA and demonstrates that this DNA secondary structure can be targeted with high structural and sequence specificity using S10.


Assuntos
DNA Circular , DNA Viral , Quadruplex G , Vírus da Hepatite B , Anticorpos de Domínio Único , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , DNA Circular/genética , DNA Viral/genética , Células Hep G2 , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Genoma Viral , Regiões Promotoras Genéticas , Replicação Viral , Hepatite B/virologia
6.
J Virol ; 96(5): e0156021, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34936820

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of several human cancers, including the endothelial cell (EC) malignancy, Kaposi's sarcoma. Unique KSHV genes absent from other human herpesvirus genomes, the "K-genes," are important for KSHV replication and pathogenesis. Among these, the kaposin transcript is highly expressed in all phases of infection, but its complex polycistronic nature has hindered functional analysis to date. At least three proteins are produced from the kaposin transcript: Kaposin A (KapA), B (KapB), and C (KapC). To determine the relative contributions of kaposin proteins during KSHV infection, we created a collection of mutant viruses unable to produce kaposin proteins individually or in combination. In previous work, we showed KapB alone recapitulated the elevated proinflammatory cytokine transcripts associated with KS via the disassembly of RNA granules called processing bodies (PBs). Using the new ΔKapB virus, we showed that KapB was necessary for this effect during latent KSHV infection. Moreover, we observed that despite the ability of all kaposin-deficient latent iSLK cell lines to produce virions, all displayed low viral episome copy number, a defect that became more pronounced after primary infection of naive ECs. For ΔKapB, provision of KapB in trans failed to complement the defect, suggesting a requirement for the kaposin locus in cis. These findings demonstrate that our panel of kaposin-deficient viruses enables precise analysis of the respective contributions of individual kaposin proteins to KSHV replication. Moreover, our mutagenesis approach serves as a guide for the functional analysis of other complex multicistronic viral loci. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) expresses high levels of the kaposin transcript during both latent and lytic phases of replication. Due to its repetitive, GC-rich nature and polycistronic coding capacity, until now no reagents existed to permit a methodical analysis of the role of individual kaposin proteins in KSHV replication. We report the creation of a panel of recombinant viruses and matched producer cell lines that delete kaposin proteins individually or in combination. We demonstrate the utility of this panel by confirming the requirement of one kaposin translation product to a key KSHV latency phenotype. This study describes a new panel of molecular tools for the KSHV field to enable precise analysis of the roles of individual kaposin proteins during KSHV infection.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Proteínas Virais , Linhagem Celular Tumoral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Mutação , Sarcoma de Kaposi/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Latência Viral/genética
7.
Biochim Biophys Acta ; 1858(12): 3195-3204, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693190

RESUMO

Anti-cancer peptides (ACPs) are small cationic and hydrophobic peptides that are more toxic to cancer cells than normal cells. ACPs kill cancer cells by causing irreparable membrane damage and cell lysis, or by inducing apoptosis. Direct-acting ACPs do not bind to a unique receptor, but are rather attracted to several different molecules on the surface of cancer cells. Here we report that an amidated wasp venom peptide, Mastoparan, exhibited potent anti-cancer activities toward leukemia (IC50~8-9.2µM), myeloma (IC50~11µM), and breast cancer cells (IC50~20-24µM), including multidrug resistant and slow growing cancer cells. Importantly, the potency and mechanism of cancer cell killing was related to the amidation of the C-terminal carboxyl group. Mastoparan was less toxic to normal cells than it was to cancer cells (e.g., IC50 to PBMC=48µM). Mastoparan killed cancer cells by a lytic mechanism. Moreover, Mastoparan enhanced etoposide-induced cell death in vitro. Our data also suggest that Mastoparan and gemcitabine work synergistically in a mouse model of mammary carcinoma. Collectively, these data demonstrate that Mastoparan is a broad-spectrum, direct-acting ACP that warrants additional study as a new therapeutic agent for the treatment of various cancers.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Neoplasias Mamárias Experimentais/tratamento farmacológico , Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Animais , Linhagem Celular Tumoral , Dicroísmo Circular , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Gencitabina
8.
PLoS Pathog ; 11(1): e1004597, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569678

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC) neoplasm Kaposi's sarcoma (KS). KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB) protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs) are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5' to 3' decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post-transcriptional control of EC gene expression and secretion.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/metabolismo , Herpesvirus Humano 8/fisiologia , Estabilidade de RNA/fisiologia , Elementos Ricos em Adenilato e Uridilato/genética , Células Cultivadas , Células HEK293 , Proteínas de Choque Térmico HSP27/metabolismo , Células HeLa , Proteínas de Choque Térmico , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares , Proteínas Serina-Treonina Quinases/metabolismo , Processamento Pós-Transcricional do RNA , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sarcoma de Kaposi/virologia , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo
9.
Parkinsonism Relat Disord ; 119: 105982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160602

RESUMO

INTRODUCTION: Outpatient palliative care offers an opportunity to improve the quality of life of Parkinson's disease (PD) patients and families. While there are efforts to improve clinicians' palliative care knowledge and skills, there is limited knowledge on patients and carepartners' knowledge and perceptions of palliative care. As part of a larger study on implementing outpatient palliative care, this study aimed to understand patients' and carepartners' knowledge and perceptions of palliative care, and their palliative care needs and preferences prior to the implementation. METHODS: Using qualitative descriptive research design, we completed semi-structured interviews with 47 patients and carepartners prior to the project implementation. De-identified transcripts of interviews were coded and analyzed. RESULTS: Five themes were identified that describe patients' and carepartners' palliative care knowledge, perceptions, needs and preferences: (a) Patients and carepartners have varied knowledge and perceptions of palliative care (b) Non-motor symptoms are challenging for patients and carepartners, (c) Addressing patients' grief and emotional needs is important to patients and carepartners, (d) Carepartners want a place for emotional care, well-being, and strategizing and (e) Patients and carepartners desire anticipatory guidance and care planning. Study participants desired guidance to manage non-motor symptoms, support for patients' emotional needs and for carepartners, and for anticipatory guidance to guide future planning. CONCLUSIONS: Despite varied palliative care knowledge, PD patients and carepartners universally desire care that addresses their palliative care needs. Palliative care education and integration of palliative care approaches into standard care may facilitate increased acceptance of outpatient palliative care throughout the disease trajectory.


Assuntos
Cuidados Paliativos , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/psicologia , Qualidade de Vida , Pesquisa Qualitativa , Pacientes
10.
J Virol ; 86(16): 8859-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696654

RESUMO

During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, host gene expression is severely restricted by a process of global mRNA degradation known as host shutoff, which rededicates translational machinery to the expression of viral proteins. A subset of host mRNAs is spared from shutoff, and a number of these contain cis-acting AU-rich elements (AREs) in their 3' untranslated regions. AREs are found in labile mRNAs encoding cytokines, growth factors, and proto-oncogenes. Activation of the p38/MK2 signal transduction pathway reverses constitutive decay of ARE-mRNAs, resulting in increased protein production. The viral G-protein-coupled receptor (vGPCR) is thought to play an important role in promoting the secretion of angiogenic molecules from KSHV-infected cells during lytic replication, but to date it has not been clear how vGPCR circumvents host shutoff. Here, we demonstrate that vGPCR activates the p38/MK2 pathway and stabilizes ARE-mRNAs, augmenting the levels of their protein products. Using MK2-deficient cells, we demonstrate that MK2 is essential for maximal vGPCR-mediated ARE-mRNA stabilization. ARE-mRNAs are normally delivered to cytoplasmic ribonucleoprotein granules known as processing bodies (PBs) for translational silencing and decay. We demonstrate that PB formation is prevented during KSHV lytic replication or in response to vGPCR-mediated activation of RhoA subfamily GTPases. Together, these data show for the first time that vGPCR impacts gene expression at the posttranscriptional level, coordinating an attack on the host mRNA degradation machinery. By suppressing ARE-mRNA turnover, vGPCR may facilitate escape of certain target mRNAs from host shutoff and allow secretion of angiogenic factors from lytically infected cells.


Assuntos
Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno , Estabilidade de RNA , Receptores de Quimiocinas/metabolismo , Replicação Viral , Expressão Gênica , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases
11.
Ann Palliat Med ; 12(5): 952-962, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37691335

RESUMO

BACKGROUND AND OBJECTIVE: Prognostication is the process of predicting a patient's likely outcome from their medical condition, and consists of determining both how well and how long a patient may live. There are few disease-specific prognostic tools to estimate a patient's individualized prognosis in terms of symptom burden and mortality. Here we summarize relevant literature on prognosis in four progressive neurologic diseases-dementia, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis-as well as on best practices on communicating prognosis with patients and care partners. METHODS: We conducted a PubMed search for terms including "prognosis", "mortality" and "prognostic indicators" in addition to specific diseases, and for terms including "prognosis AND communication". Only English-language papers were included in this review. The time frame of our literature search was 1965 through March 1, 2023. KEY CONTENT AND FINDINGS: There is some literature to help clinicians in predicting disease progression and survival. These include both general factors (e.g., age, medical co-morbidities) and disease-specific factors (e.g., postural instability in Parkinson's disease). There is also literature on communication of prognosis in neurologic and non-neurologic disease which demonstrates that many patients and care partners prefer to hear prognosis early after diagnosis and to have prognosis discussed as a roadmap of disease. CONCLUSIONS: More work is needed to develop tools for individualized prognostication and communication for patients with neurologic disease. While there is limited literature on disease-specific prognostic models, existing literature combined with palliative care approaches may improve prognostic guidance for patients.


Assuntos
Demência , Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Prognóstico , Cuidados Paliativos , Doença Crônica
12.
Handb Clin Neurol ; 191: 107-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36599503

RESUMO

Although neuropalliative care is a relatively new field, there is increasing evidence for its use among the degenerative parkinsonian syndromes, including idiopathic Parkinson disease, progressive supranuclear palsy, multiple system atrophy, dementia with Lewy bodies, and corticobasal syndrome. This chapter outlines the current state of evidence for palliative care among individuals with the degenerative parkinsonian syndromes with discussion surrounding: (1) disease burden and needs across the conditions; (2) utility, timing, and methods for advance care planning; (3) novel care models for the provision of palliative care; and 4) end-of-life care issues. We also discuss currently unmet needs and unanswered questions in the field, proposing priorities for research and the assessment of implemented care models.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Doença de Parkinson/terapia , Cuidados Paliativos , Paralisia Supranuclear Progressiva/terapia
13.
Blood Adv ; 7(15): 4170-4181, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37307197

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters the respiratory tract, where it infects the alveoli epithelial lining. However, patients have sequelae that extend well beyond the alveoli into the pulmonary vasculature and, perhaps, beyond to the brain and other organs. Because of the dynamic events within blood vessels, histology does not report platelet and neutrophil behavior. Because of the rapid nontranscriptional response of these cells, neither single-cell RNA sequencing nor proteomics report robustly on their critical behaviors. We used intravital microscopy in level-3 containment to examine the pathogenesis of SARS-CoV-2 within 3 organs in mice expressing human angiotensin converting enzyme 2 (ACE-2) ubiquitously (CAG-AC-70) or on epithelium (K18-promoter). Using a neon-green SARS-CoV-2, we observed both the epithelium and endothelium infected in AC70 mice but only the epithelium in K18 mice. There were increased neutrophils in the microcirculation but not in the alveoli of the lungs of AC70 mice. Platelets formed large aggregates in the pulmonary capillaries. Despite only neurons being infected within the brain, profound neutrophil adhesion forming the nidus of large platelet aggregates were observed in the cerebral microcirculation, with many nonperfused microvessels. Neutrophils breached the brain endothelial layer associated with a significant disruption of the blood-brain-barrier. Despite ubiquitous ACE-2 expression, CAG-AC-70 mice had very small increases in blood cytokine, no increase in thrombin, no infected circulating cells, and no liver involvement suggesting limited systemic effects. In summary, our imaging of SARS-CoV-2-infected mice gave direct evidence that there is a significant perturbation locally in the lung and brain microcirculation induced by local viral infection leading to increased local inflammation and thrombosis in these organs.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , COVID-19/patologia , Inflamação/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia
14.
Methods ; 55(2): 172-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21854851

RESUMO

Early host responses to viral infection rapidly induce an antiviral gene expression program that limits viral replication and recruits sentinel cells of the innate immune system. These responses are mediated by cytokines. The mRNAs that encode cytokines typically harbor destabilizing adenine- and uridine-rich elements (AREs) that direct their constitutive degradation in the cytoplasm. In response to a variety of signals, including viral infection, small pools of cytoplasmic ARE-mRNAs are rapidly stabilized and translated. Thus, mRNA stability plays a key role in antiviral gene expression. Intriguingly, recent studies have identified viral proteins that specifically target ARE-mRNAs for stabilization, suggesting that certain proteins encoded by ARE-mRNAs may be advantageous for infection. Here, we discuss the development of a suite of sensitive and complementary assays to monitor ARE-mRNA turnover. These include luciferase- and destabilized-GFP-based assays that can be adapted for high-throughput screening applications.


Assuntos
Genes Reporter , Interações Hospedeiro-Patógeno , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Northern Blotting/métodos , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Dados de Sequência Molecular , Estabilidade de RNA , Coelhos , Coloração e Rotulagem , Transfecção , Globinas beta/biossíntese , Globinas beta/genética
15.
STAR Protoc ; 3(3): 101617, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990736

RESUMO

Induced pluripotent stem cell (iPSC)-derived kidney organoids can be used for disease modeling and drug testing. Here, we describe a protocol to prepare stocks of an infectious clone of SARS-CoV-2 expressing a stable mNeonGreen reporter (icSARS-CoV-2-mNG). We demonstrate the infection of kidney organoids, primarily at the proximal tubular cells, with icSARS-CoV-2-mNG. Using a TCID50 (tissue culture infectious dose 50) assay and confocal microscopy, we show the quantification of SARS-CoV-2-mNG signal in proximal tubular cells of the kidney organoids. For complete details on the use and execution of this protocol, please refer to Rahmani et al. (2022).


Assuntos
COVID-19 , SARS-CoV-2 , Células Clonais , DNA Complementar/genética , Humanos , Rim , Organoides , SARS-CoV-2/genética
16.
iScience ; 25(2): 103818, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106453

RESUMO

COVID-19-associated acute kidney injury (COVID-AKI) is a common complication of SARS-CoV-2 infection in hospitalized patients. The susceptibility of human kidneys to direct SARS-CoV-2 infection and modulation of the renin-angiotensin II signaling (RAS) pathway by viral infection remain poorly characterized. Using induced pluripotent stem cell-derived kidney organoids, SARS-CoV-1, SARS-CoV-2, and MERS-CoV tropism, defined by the paired expression of a host receptor (ACE2, NRP1 or DPP4) and protease (TMPRSS2, TMPRSS4, FURIN, CTSB or CTSL), was identified primarily among proximal tubule cells. Losartan, an angiotensin II receptor blocker being tested in patients with COVID-19, inhibited angiotensin II-mediated internalization of ACE2, upregulated interferon-stimulated genes (IFITM1 and BST2) known to restrict viral entry, and attenuated the infection of proximal tubule cells by SARS-CoV-2. Our work highlights the susceptibility of proximal tubule cells to SARS-CoV-2 and reveals a putative protective role for RAS inhibitors during SARS-CoV-2 infection.

17.
Ann Glob Health ; 88(1): 52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860037

RESUMO

Medical education has drastically transformed during the COVID-19 pandemic. Measures such as adopting telemedicine visits, minimizing the number of trainees on service, discontinuing external rotations, and converting in-person to online didactics have been broadly and swiftly implemented. While these innovations have promoted greater interconnectivity amongst institutions and made continuing medical education possible, international exchange programs in medical education are still largely disrupted. In response to the changing guidelines and restrictions necessitated by the COVID-19 pandemic, the authors used Kern's six-step approach to design and implement a virtual curriculum to replace the in-person activities of the 2020-2021 Neurology Peru-Rochester exchange program (NeuroPro). Twenty-seven trainees participated in this virtual adaptation. The average daily attendance was ≥85% and the program was rated 9/10 on average in a feedback survey (63% response rate). The median percentage of correct answers during the pre-test was 64% and it increased to 79% during the post-test (P = 0.003). Virtual adaptation of international exchange programs in medical education is feasible to safely continue international collaborative efforts to promote symbiotic building of local expertise and cross-cultural exchange during the ongoing COVID-19 pandemic and beyond.


Assuntos
COVID-19 , Neurologia , COVID-19/epidemiologia , Currículo , Educação Médica Continuada , Humanos , Neurologia/educação , Pandemias
18.
J Gen Virol ; 92(Pt 1): 162-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20861318

RESUMO

The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane-fusion proteins. How these diminutive fusogens mediate cell-cell fusion and syncytium formation is unclear. Ongoing efforts are aimed at defining the roles of the FAST protein ecto-, endo- and transmembrane domains in the membrane-fusion reaction. We now provide direct evidence for homomultimer formation by the FAST proteins by using an anti-haemagglutinin (HA) mAb to co-precipitate the untagged p14 FAST protein from cells co-transfected with HA-tagged p14. Disrupting the intracellular endoplasmic reticulum-Golgi complex vesicle transport pathway prevented p14 homomultimer formation, while lower pH disrupted p14 multimers. The p14 endodomain or transmembrane domains are not required for multimer formation, which, along with the pH sensitivity and the distribution of histidine residues, suggests the 36 aa p14 ectodomain is a multimerization motif.


Assuntos
Complexo de Golgi/virologia , Proteínas de Membrana/metabolismo , Multimerização Proteica , Reoviridae/fisiologia , Proteínas Virais de Fusão/metabolismo , Concentração de Íons de Hidrogênio , Imunoprecipitação , Via Secretória
19.
Mol Cell Biol ; 41(11): e0039921, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34516278

RESUMO

Processing bodies (PBs) are ribonucleoprotein granules important for cytokine mRNA decay that are targeted for disassembly by many viruses. Kaposi's sarcoma-associated herpesvirus is the etiological agent of the inflammatory endothelial cancer, Kaposi's sarcoma, and a PB-regulating virus. The virus encodes kaposin B (KapB), which induces actin stress fibers (SFs) and cell spindling as well as PB disassembly. We now show that KapB-mediated PB disassembly requires actin rearrangements, RhoA effectors, and the mechanoresponsive transcription activator, YAP. Moreover, ectopic expression of active YAP or exposure of ECs to mechanical forces caused PB disassembly in the absence of KapB. We propose that the viral protein KapB activates a mechanoresponsive signaling axis and links changes in cell shape and cytoskeletal structures to enhanced inflammatory molecule expression using PB disassembly. Our work implies that cytoskeletal changes in other pathologies may similarly impact the inflammatory environment.


Assuntos
Transformação Celular Neoplásica/patologia , Mecanotransdução Celular/fisiologia , Corpos de Processamento/metabolismo , Proteínas Virais/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Forma Celular/fisiologia , Regulação da Expressão Gênica/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais/fisiologia , Proteínas Virais/genética , Replicação Viral/fisiologia
20.
J Virol ; 83(6): 2601-10, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19129438

RESUMO

The herpes simplex virus type 1 (HSV-1) gene UL12 encodes a conserved alkaline DNase with orthologues in all herpesviruses. The HSV-1 UL12 gene gives rise to two separately promoted 3' coterminal mRNAs which encode distinct but related proteins: full-length UL12 and UL12.5, an amino-terminally truncated form that initiates at UL12 codon 127. Full-length UL12 localizes to the nucleus where it promotes the generation of mature viral genomes from larger precursors. In contrast, UL12.5 is predominantly mitochondrial and acts to trigger degradation of the mitochondrial genome early during infection. We examined the basis for these very different subcellular localization patterns. We confirmed an earlier report that the amino-terminal region of full-length UL12 is required for nuclear localization and provide evidence that multiple nuclear localization determinants are present in this region. In addition, we demonstrate that mitochondrial localization of UL12.5 relies largely on sequences located between UL12 residues 185 and 245 (UL12.5 residues 59 to 119). This region contains a sequence that resembles a typical mitochondrial matrix localization signal, and mutations that reduce the positive charge of this element severely impaired mitochondrial localization. Consistent with matrix localization, UL12.5 displayed a detergent extraction profile indistinguishable from that of the matrix protein cyclophilin D. Mitochondrial DNA depletion required the exonuclease activity of UL12.5, consistent with the idea that UL12.5 located within the matrix acts directly to destroy the mitochondrial genome. These results clarify how two highly related viral proteins are targeted to different subcellular locations with distinct functional consequences.


Assuntos
Desoxirribonucleases/metabolismo , Herpesvirus Humano 1/fisiologia , Mitocôndrias/virologia , Sinais Direcionadores de Proteínas/genética , Proteínas Virais/metabolismo , Substituição de Aminoácidos/genética , Animais , Chlorocebus aethiops , DNA Mitocondrial/metabolismo , Desoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Células Vero , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA