Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anesth Analg ; 128(4): 737-746, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883419

RESUMO

With a widespread opioid epidemic and profound biopsychosocial implications, chronic pain is a multifaceted public health issue requiring urgent attention. The treatment of chronic pain is particularly important to anesthesiologists given our unique role as perioperative physicians and pain medicine specialists. The present review details the recent shift from a neuronal theory of chronic pain to one that includes complex neuron-glia interactions. In particular, we highlight microglia, the myeloid-lineage cells of the central nervous system, as initiators of a postinjury neuroimmune response that contributes to the acute to chronic pain transition. We discuss ever-advancing preclinical studies, wherein significant success has been made through pharmacologic and genetic modulation of microglia, and we emphasize where these approaches have made the transition to the clinical realm. Furthermore, we highlight the most current, novel efforts to visualize glial activation in vivo using positron emission tomography and improve the diagnosis of chronic pain through radiotracer binding of specific targets, like the 18 kDa translocator protein in microglia and myeloid-lineage cells. Our rapidly advancing knowledge about microglia and their involvement in pain suggests that the era of glial-targeted therapeutics is just beginning so long as we refocus our attention on optimizing preclinical studies using a clinically informed approach, before translation.


Assuntos
Dor Crônica/terapia , Microglia/metabolismo , Manejo da Dor/métodos , Analgésicos Opioides/uso terapêutico , Animais , Sistema Nervoso Central/efeitos dos fármacos , Dor Crônica/metabolismo , Citocinas/antagonistas & inibidores , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos/metabolismo , Receptor 4 Toll-Like/metabolismo , Pesquisa Translacional Biomédica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Neurobiol Pain ; 12: 100106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531615

RESUMO

Chronic pain is a common and often debilitating problem that affects 100 million Americans. A better understanding of pain's molecular mechanisms is necessary for developing safe and effective therapeutics. Microglial activation has been implicated as a mediator of chronic pain in numerous preclinical studies; unfortunately, translational efforts using known glial modulators have largely failed, perhaps at least in part due to poor specificity of the compounds pursued, or an incomplete understanding of microglial reactivity. In order to achieve a more granular understanding of the role of microglia in chronic pain as a means of optimizing translational efforts, we utilized a clinically-informed mouse model of complex regional pain syndrome (CRPS), and monitored microglial activation throughout pain progression. We discovered that while both males and females exhibit spinal cord microglial activation as evidenced by increases in Iba1, activation is attenuated and delayed in females. We further evaluated the expression of the newly identified microglia-specific marker, TMEM119, and identified two distinct populations in the spinal cord parenchyma after peripheral injury: TMEM119+ microglia and TMEM119- infiltrating myeloid lineage cells, which are comprised of Ly6G + neutrophils and Ly6G- macrophages/monocytes. Neurons are sensitized by inflammatory mediators released in the CNS after injury; however, the cellular source of these cytokines remains somewhat unclear. Using multiplex in situ hybridization in combination with immunohistochemistry, we demonstrate that spinal cord TMEM119+ microglia are the cellular source of cytokines IL6 and IL1ß after peripheral injury. Taken together, these data have important implications for translational studies: 1) microglia remain a viable analgesic target for males and females, so long as duration after injury is considered; 2) the analgesic properties of microglial modulators are likely at least in part related to their suppression of microglial-released cytokines, and 3) a limited number of neutrophils and macrophages/monocytes infiltrate the spinal cord after peripheral injury but have unknown impact on pain persistence or resolution. Further studies to uncover glial-targeted therapeutic interventions will need to consider sex, timing after injury, and the exact target population of interest to have the specificity necessary for translation.

3.
Pain ; 160(9): 2136-2148, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31095093

RESUMO

Complex regional pain syndrome (CRPS) is a severely disabling disease characterized by pain, temperature changes, motor dysfunction, and edema that most often occurs as an atypical response to a minor surgery or fracture. Inflammation involving activation and recruitment of innate immune cells, including both peripheral and central myeloid cells (ie, macrophages and microglia, respectively), is a key feature of CRPS. However, the exact role and time course of these cellular processes relative to the known acute and chronic phases of the disease are not fully understood. Positron emission tomography (PET) of translocator protein-18 kDa (TSPO) is a method for noninvasively tracking these activated innate immune cells. Here, we reveal the temporal dynamics of peripheral and central inflammatory responses over 20 weeks in a tibial fracture/casting mouse model of CRPS through longitudinal TSPO-PET using [F]GE-180. Positron emission tomography tracer uptake quantification in the tibia revealed increased peripheral inflammation as early as 2 days after fracture and lasting 7 weeks. Centralized inflammation was detected in the spinal cord and brain of fractured mice at 7 and 21 days after injury. Spinal cord tissue immunofluorescent staining revealed TSPO expression in microglia (CD11b+) at 7 days but was restricted mainly to endothelial cells (PECAM1+) at baseline and 7 weeks. Our data suggest early and persistent peripheral myeloid cell activation and transient central microglial activation are limited to the acute phase of CRPS. Moreover, we show that TSPO-PET can be used to noninvasively monitor the spatiotemporal dynamics of myeloid cell activation in CRPS progression with potential to inform disease phase-specific therapeutics.


Assuntos
Carbazóis/metabolismo , Síndromes da Dor Regional Complexa/diagnóstico por imagem , Síndromes da Dor Regional Complexa/metabolismo , Modelos Animais de Doenças , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo
4.
J Vis Exp ; (129)2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29286376

RESUMO

Mitochondria are the powerhouses of cells and produce cellular energy in the form of ATP. Mitochondrial dysfunction contributes to biological aging and a wide variety of disorders including metabolic diseases, premature aging syndromes, and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Maintenance of mitochondrial health depends on mitochondrial biogenesis and the efficient clearance of dysfunctional mitochondria through mitophagy. Experimental methods to accurately detect autophagy/mitophagy, especially in animal models, have been challenging to develop. Recent progress towards the understanding of the molecular mechanisms of mitophagy has enabled the development of novel mitophagy detection techniques. Here, we introduce several versatile techniques to monitor mitophagy in human cells, Caenorhabditis elegans (e.g., Rosella and DCT-1/ LGG-1 strains), and mice (mt-Keima). A combination of these mitophagy detection techniques, including cross-species evaluation, will improve the accuracy of mitophagy measurements and lead to a better understanding of the role of mitophagy in health and disease.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA