Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36325111

RESUMO

We present the design and feasibility testing of a multimodal co-registered endoscope based on a dual-path optical system integrated with a scanning piezo. This endoscope incorporates three different imaging modalities. A large field of view reflectance imaging system enables visualization of objects several millimeters in front of the endoscope, while optical coherence microscopy and multiphoton microscopy are employed in contact with tissue to further analyze suspicious areas. The optical system allows multiple different imaging modalities by employing a dual optical path. One path features a low numerical aperture and wide field of view to allow reflectance imaging of distant objects. The other path features a high numerical aperture and short working distance to allow microscopy techniques such as optical coherence microscopy and multiphoton microscopy. Images of test targets were obtained with each imaging modality to verify and characterize the imaging capabilities of the endoscope. The reflectance modality was demonstrated with a 561 nm laser to allow high contrast with blood vessels. It achieved a lateral resolution of 24.8 µm at 5 mm and a working distance from 5 mm to 30 mm. Optical coherence microscopy (OCM) was performed with a 1300 nm super-luminescent diode since this wavelength experiences low relative scattering to allow for deeper tissue imaging. Measured OCM lateral and axial resolution was 4.0 µm and 14.2 µm, respectively. Multiphoton microscopy (MPM) was performed with a custom 1400 nm femtosecond fiber laser, a wavelength suitable for exciting multiple exogenous and some endogenous fluorophores, as well as providing information on tissue composition through harmonic generation processes. A 4.0 µm MPM lateral resolution was measured.

2.
J Biomed Opt ; 26(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34216135

RESUMO

SIGNIFICANCE: Most cases of high-grade serous ovarian carcinoma originate as serous tubal intraepithelial carcinoma (STIC) lesions in the fallopian tube epithelium (FTE), enabling early endoscopic detection. AIM: The cell-acquiring fallopian endoscope (CAFE) was built to meet requirements for locating potentially pathological tissue indicated by an alteration in autofluorescence or presence of a targeted fluorophore. A channel was included for directed scrape biopsy of cells from regions of interest. APPROACH: Imaging resolution and fluorescence sensitivity were measured using a standard resolution target and fluorescence standards, respectively. A prototype was tested in ex vivo tissue, and collected cells were counted and processed. RESULTS: Measured imaging resolution was 88 µm at a 5-mm distance, and full field of view was ∼45 deg in air. Reflectance and fluorescence images in ex vivo porcine reproductive tracts were captured, and fit through human tracts was verified. Hemocytometry counts showed that on the order of 105 cells per scrape biopsy could be collected from ex vivo porcine tissue. CONCLUSIONS: All requirements for viewing STIC in the FTE were met, and collected cell counts exceeded input requirements for relevant analyses. Our benchtop findings suggest the potential utility of the CAFE device for in vivo imaging and cell collection in future clinical trials.


Assuntos
Carcinoma in Situ , Neoplasias Ovarianas , Animais , Endoscópios , Tubas Uterinas/diagnóstico por imagem , Estudos de Viabilidade , Feminino , Humanos , Imagem Óptica , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA