Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Anal Bioanal Chem ; 415(6): 1137-1147, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36456747

RESUMO

In this study, an implantable stereo-electroencephalography (sEEG) depth electrode was functionalised with an enzyme coating for enzyme-based biosensing of glucose and L-glutamate. This was done because personalised medicine could benefit from active real-time neurochemical monitoring on small spatial and temporal scales to further understand and treat neurological disorders. To achieve this, the sEEG depth electrode was characterised using cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) using several electrochemical redox mediators (potassium ferri/ferrocyanide, ruthenium hexamine chloride, and dopamine). To improve performance, the Pt sensors on the sEEG depth electrode were coated with platinum black and a crosslinked gelatin-enzyme film to enable enzymatic biosensing. This characterisation work showed that producing a useable electrode with a good electrochemical response showing the expected behaviour for a platinum electrode was possible. Coating with Pt black improved the sensitivity to H2O2 over unmodified electrodes and approached that of well-defined Pt macro disc electrodes. Measured current showed good dependence on concentration, and the calibration curves report good sensitivity of 29.65 nA/cm2/µM for glucose and 8.05 nA/cm2/µM for L-glutamate with a stable, repeatable, and linear response. These findings demonstrate that existing clinical electrode devices can be adapted for combined electrochemical and electrophysiological measurement in patients and obviate the need to develop new electrodes when existing clinically approved devices and the associated knowledge can be reused. This accelerates the time to use and application of in vivo and wearable biosensing for diagnosis, treatment, and personalised medicine.


Assuntos
Técnicas Biossensoriais , Ácido Glutâmico , Humanos , Peróxido de Hidrogênio , Eletrodos , Glucose/química , Técnicas Biossensoriais/métodos , Eletrodos Implantados , Técnicas Eletroquímicas/métodos , Platina/química
2.
Anal Bioanal Chem ; 415(29-30): 7035-7045, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794245

RESUMO

A major societal challenge is the development of the necessary tools for early diagnosis of diseases such as cancer and sepsis. Consequently, there is a concerted push to develop low-cost and non-invasive methods of analysis with high sensitivity and selectivity. A notable trend is the development of highly sensitive methods that are not only amenable for point-of-care (POC) testing, but also for wearable devices allowing continuous monitoring of biomarkers. In this context, a non-invasive test for the detection of a promising biomarker, the protein Interleukin-6 (IL-6), could represent a significant advance in the clinical management of cancer, in monitoring the chemotherapy response, or for prompt diagnosis of sepsis. This work reports a capacitive electrochemical impedance spectroscopy sensing platform tailored towards POC detection and treatment monitoring in human serum. The specific recognition of IL-6 was achieved employing gold surfaces modified with an anti-IL6 nanobody (anti-IL-6 VHH) or a specific IL-6 aptamer. In the first system, the anti-IL-6 VHH was covalently attached to the gold surface using a binary self-assembled-monolayer (SAM) of 6-mercapto-1-hexanol (MCH) and 11-mercaptoundecanoic acid. In the second system, the aptamer was chemisorbed onto the surface in a mixed SAM layer with MCH. The analytical performance for each label-free sensor was evaluated in buffer and 10% human serum samples and then compared. The results of this work were generated using a low-cost, thin film eight-channel gold sensor array produced on a flexible substrate providing useful information on the future design of POC and wearable impedance biomarker detection platforms.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias , Sepse , Humanos , Técnicas Biossensoriais/métodos , Interleucina-6 , Aptâmeros de Nucleotídeos/química , Ouro/química , Biomarcadores , Eletrodos , Técnicas Eletroquímicas/métodos
3.
Anal Chem ; 94(4): 2126-2133, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043638

RESUMO

SARS-CoV-2 diagnostic practices broadly involve either quantitative polymerase chain reaction (qPCR)-based nucleic amplification of viral sequences or antigen-based tests such as lateral flow assays (LFAs). Reverse transcriptase-qPCR can detect viral RNA and is the gold standard for sensitivity. However, the technique is time-consuming and requires expensive laboratory infrastructure and trained staff. LFAs are lower in cost and near real time, and because they are antigen-based, they have the potential to provide a more accurate indication of a disease state. However, LFAs are reported to have low real-world sensitivity and in most cases are only qualitative. Here, an antigen-based electrochemical aptamer sensor is presented, which has the potential to address some of these shortfalls. An aptamer, raised to the SARS-CoV-2 spike protein, was immobilized on a low-cost gold-coated polyester substrate adapted from the blood glucose testing industry. Clinically relevant detection levels for SARS-CoV-2 are achieved in a simple, label-free measurement format using sample incubation times as short as 15 min on nasopharyngeal swab samples. This assay can readily be optimized for mass manufacture and is compatible with a low-cost meter.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Espectroscopia Dielétrica , Eletrodos , Humanos , RNA Viral , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus
4.
Analyst ; 147(20): 4598-4606, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36112133

RESUMO

3D-printing has become a fundamental part of research in many areas of investigation since it provides rapid and personalized production of parts that meet very specific user needs. Biosensing is not an exception, and production of electrochemical sensors that can detect a variety of redox mediators and biologically relevant molecules has been widely reported. However, most 3D-printed electrochemical sensors detailed in the literature rely on big, individual, single-material electrodes that require large sample volumes to perform effectively. Our work exploits multi-material fused filament fabrication 3D-printing to produce a compact electrochemical sensor able to operate with only 100 µL of sample. We report cyclic voltammetry, differential pulse voltammetry, and chronoamperometry results to assess sensor performance and sensitivity. We investigated the influence of layer print orientation and layer thickness on the electrochemical performance of the sensor, and used the optimal parameters to produce the final device. The integrated 3D-printed platform successfully detects electrochemical activity for hexaammineruthenium(III) chloride and potassium ferricyanide (0.1 mM to 2 mM in 100 mM KCl), dopamine (50 µM to 1 mM in 1×PBS), and glucose via mediated amperometric glucose oxidase enzyme-based sensing (1 mM to 12 mM in 1×PBS), indicating good acceptance of biological modification. These results reveal the exciting potential of multi-material 3D-printing and how it can be used for the rapid development of efficient, small, integrated, personalized electrochemical biosensors.


Assuntos
Técnicas Biossensoriais , Dopamina , Cloretos , Técnicas Eletroquímicas , Eletrodos , Glucose , Glucose Oxidase , Impressão Tridimensional
5.
Langmuir ; 37(25): 7801-7809, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34128683

RESUMO

DNA origami structures represent an exciting class of materials for use in a wide range of biotechnological applications. This study reports the design, production, and characterization of a DNA origami "zipper" structure, which contains nine pH-responsive DNA locks. Each lock consists of two parts that are attached to the zipper's opposite arms: a DNA hairpin and a single-stranded DNA that are able to form a DNA triplex through Hoogsteen base pairing. The sequences of the locks were selected in a way that the zipper adopted a closed configuration at pH 6.5 and an open state at pH 8.0 (transition pKa 7.6). By adding thiol groups, it was possible to immobilize the zipper structure onto gold surfaces. The immobilization process was characterized electrochemically to confirm successful adsorption of the zipper. The open and closed states were then probed using differential pulse voltammetry and electrochemical impedance spectroscopy with solution-based redox agents. It was found that after immobilization, the open or closed state of the zipper in different pH regimes could be determined by electrochemical interrogation. These findings pave the way for development of DNA origami-based pH monitoring and other pH-responsive sensing and release strategies for zipper-functionalized gold surfaces.


Assuntos
Técnicas Biossensoriais , DNA , DNA de Cadeia Simples , Técnicas Eletroquímicas , Ouro , Concentração de Íons de Hidrogênio
6.
Biotechnol Appl Biochem ; 68(6): 1159-1166, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32975308

RESUMO

Today, the emergence of antibiotic resistance in pathogenic bacteria is considered an important problem for society. Excessive consumption of antibiotics, long-term treatments, and inappropriate prescriptions continually increase the severity of the problem. Improving antibiotic stewardship requires improved diagnostic testing, and, therefore, in vitro antibiotic susceptibility testing is becoming increasingly important. This research details the development of an antibiotic susceptibility test for Mycobacterium smegmatis using streptomycin as antibiotics. This strain was selected because it is a member of the slow growing Mycobacterium genus and serves as a useful surrogate organism for M. tuberculosis. A commercially available and low-cost screen-printed gold electrode in combination with a specifically developed nucleic acid probe sequence for the 16SrRNA region of the mycobacterial genome was employed to monitor M. smegmatis nucleic acid sequences using the techniques of square-wave voltammetry and electrochemical impedance spectroscopy. The results show that it was possible to detect M. smegmatis sequences and distinguish antibiotic-treated cells from untreated cells with a label-free molecular detection. As a result, the in vitro antibiotic susceptibility test revealed that M. smegmatis showed sensitivity to streptomycin after a 24-H incubation, with the developed protocol representing a potential approach to determining antibiotic susceptibility more quickly and economically than current methods.


Assuntos
Antituberculosos/análise , Ouro/química , Estreptomicina/análise , Antituberculosos/farmacologia , Eletrodos , Ouro/economia , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Estreptomicina/farmacologia
7.
Sensors (Basel) ; 18(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890722

RESUMO

For analytical applications involving label-free biosensors and multiple measurements, i.e., across an electrode array, it is essential to develop complete sensor systems capable of functionalization and of producing highly consistent responses. To achieve this, a multi-microelectrode device bearing twenty-four equivalent 50 µm diameter Pt disc microelectrodes was designed in an integrated 3-electrode system configuration and then fabricated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for initial electrochemical characterization of the individual working electrodes. These confirmed the expected consistency of performance with a high degree of measurement reproducibility for each microelectrode across the array. With the aim of assessing the potential for production of an enhanced multi-electrode sensor for biomedical use, the working electrodes were then functionalized with 6-mercapto-1-hexanol (MCH). This is a well-known and commonly employed surface modification process, which involves the same principles of thiol attachment chemistry and self-assembled monolayer (SAM) formation commonly employed in the functionalization of electrodes and the formation of biosensors. Following this SAM formation, the reproducibility of the observed electrochemical signal between electrodes was seen to decrease markedly, compromising the ability to achieve consistent analytical measurements from the sensor array following this relatively simple and well-established surface modification. To successfully and consistently functionalize the sensors, it was necessary to dilute the constituent molecules by a factor of ten thousand to support adequate SAM formation on microelectrodes. The use of this multi-electrode device therefore demonstrates in a high throughput manner irreproducibility in the SAM formation process at the higher concentration, even though these electrodes are apparently functionalized simultaneously in the same film formation environment, confirming that the often seen significant electrode-to-electrode variation in label-free SAM biosensing films formed under such conditions is not likely to be due to variation in film deposition conditions, but rather kinetically controlled variation in the SAM layer formation process at these microelectrodes.

8.
Analyst ; 142(11): 1946-1952, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28492640

RESUMO

Due to their electroanalytical advantages, microelectrodes are a very attractive technology for sensing and monitoring applications. One highly important application is measurement of DNA hybridisation to detect a wide range of clinically important phenomena, including single nucleotide polymorphisms (SNPs), mutations and drug resistance genes. The use of electrochemical impedance spectroscopy (EIS) for measurement of DNA hybridisation is well established for large electrodes but as yet remains relatively unexplored for microelectrodes due to difficulties associated with electrode functionalisation and impedimetric response interpretation. To shed light on this, microelectrodes were initially fabricated using photolithography and characterised electrochemically to ensure their responses matched established theory. Electrodes with different radii (50, 25, 15 and 5 µm) were then functionalised with a mixed film of 6-mercapto-1-hexanol and a thiolated single stranded DNA capture probe for a specific gene from the antibiotic resistant bacterium MRSA. The complementary oligonucleotide target from the mecA MRSA gene was hybridised with the surface tethered ssDNA probe. The EIS response was evaluated as a function of electrode radius and it was found that charge-transfer (RCT) was more significantly affected by hybridisation of the mecA gene than the non-linear resistance (RNL) which is associated with the steady state current. The discrimination of mecA hybridisation improved as electrode radius reduced with the RCT component of the response becoming increasingly dominant for smaller radii. It was possible to utilise these findings to produce a real time measurement of oligonucleotide binding where changes in RCT were evident one minute after nanomolar target addition. These data provide a systematic account of the effect of microelectrode radius on the measurement of hybridisation, providing insight into critical aspects of sensor design and implementation for the measurement of clinically important DNA sequences. The findings open up the possibility of developing rapid, sensitive DNA based measurements using microelectrodes.


Assuntos
Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Microeletrodos , Hibridização de Ácido Nucleico , Sondas de DNA , DNA Bacteriano , Genes Bacterianos
9.
Analyst ; 142(15): 2849, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28678245

RESUMO

Correction for 'Impedimetric measurement of DNA-DNA hybridisation using microelectrodes with different radii for detection of methicillin resistant Staphylococcus aureus (MRSA)' by Poh Quan Li et al., Analyst, 2017, 142, 1946-1952.

10.
Faraday Discuss ; 190: 351-66, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252128

RESUMO

Microelectrodes have a number of advantages over macroelectrodes for quantitative electroanalysis and monitoring, including reduced iR drop, a high signal-to-noise ratio and reduced sensitivity to convection. Their use in molten salts has been generally precluded by the combined materials challenges of stresses associated with thermal cycling and physical and corrosive chemical degradation at the relatively high temperatures involved. We have shown that microfabrication, employing high precision photolithographic patterning in combination with the controlled deposition of materials, can be used to successfully address these challenges. The resulting molten salt compatible microelectrodes (MSMs) enable prolonged quantitative microelectrode measurements in molten salts (MSs). This paper reports the fabrication of novel MSM disc electrodes, chosen because they have an established ambient analytical response. It includes a detailed set of electrochemical characterisation studies which demonstrate both their enhanced capability over macroelectrodes and over commercial glass pulled microelectrodes, and their ability to extract quantitative electroanalytical information from MS systems. MSM measurements are then used to demonstrate their potential for shedding new light on the fundamental properties of, and processes in, MSs, such as mass transport, charge transfer reaction rates and the selective plating/stripping and alloying reactions of liquid Bi and other metals; this will underpin the development of enhanced MS industrial processes, including pyrochemical spent nuclear fuel reprocessing.

11.
Anal Chem ; 86(22): 11342-8, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25284431

RESUMO

Molten salts (MSs) are an attractive medium for chemical and electrochemical processing and as a result there is demand for MS-compatible analysis technologies. However, MSs containing redox species present a challenging environment in which to perform analytical measurements because of their corrosive nature, significant thermal convection and the high temperatures involved. This paper outlines the fabrication and characterization of microfabricated square microelectrodes (MSMs) designed for electrochemical analysis in MS systems. Their design enables precise control over electrode dimension, the minimization of stress because of differential thermal expansion through design for high temperature operation, and the minimization of corrosive attack through effective insulation. The exemplar MS system used for characterization was lithium chloride/potassium chloride eutectic (LKE), which has potential applications in pyrochemical nuclear fuel reprocessing, metal refining, molten salt batteries and electric power cells. The observed responses for a range of redox ions between 400 and 500 °C (673 and 773 K) were quantitative and typical of microelectrodes. MSMs also showed the reduced iR drop, steady-state diffusion-limited response, and reduced sensitivity to convection seen for microelectrodes under ambient conditions and expected for these electrodes in comparison to macroelectrodes. Diffusion coefficients were obtained in close agreement with literature values, more readily and at greater precision and accuracy than both macroelectrode and previous microelectrode measurements. The feasibility of extracting individual physical parameters from mixtures of redox species (as required in reprocessing) and of the prolonged measurement required for online monitoring was also demonstrated. Together, this demonstrates that MSMs provide enhanced electrode devices widely applicable to the characterization of redox species in a range of MS systems.

12.
Sci Rep ; 14(1): 14154, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898088

RESUMO

Earlier access to patients' biomarker status could transform disease management. However, gold-standard techniques such as enzyme-linked immunosorbent assays (ELISAs) are typically not deployed at the point-of-care due to their cumbersome instrumentation and complexity. Electrochemical immunosensors can be disruptive in this sector with their small size and lower cost but, without further modifications, the performance of these sensors in complex media (e.g., blood) has been limited. This paper presents a low-cost fluidic accessory fabricated using widely accessible materials and processes for boosting sensor sensitivity through confinement of the detection media next to the electrode surface. Liquid confinement first highlighted a spontaneous reaction between the pseudoreference electrode and ELISA detection substrate 3,3',5,5'-tetramethylbenzidine (TMB) that decreases the amount of oxTMB available for detection. Different strategies are investigated to limit this and maximize reliability. Next, flow cell integration during the signal amplification step of sensor preparation was shown to substantially enhance the detection of cytokine interleukin-6 (IL-6) with the best sensitivity boost recorded for fresh human plasma (x7 increase compared to x5.8 in purified serum and x5.5 in PBS). The flow cell requires no specialized equipment and can be seamlessly integrated with commercial sensors, making an ideal companion for electrochemical signal enhancement.


Assuntos
Técnicas Eletroquímicas , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Imunoensaio/métodos , Imunoensaio/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Eletrodos , Ensaio de Imunoadsorção Enzimática/métodos , Interleucina-6/sangue , Interleucina-6/análise , Benzidinas/química
13.
ACS Sens ; 8(4): 1471-1480, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36914224

RESUMO

Electrochemical DNA (e-DNA) biosensors are feasible tools for disease monitoring, with their ability to translate hybridization events between a desired nucleic acid target and a functionalized transducer, into recordable electrical signals. Such an approach provides a powerful method of sample analysis, with a strong potential to generate a rapid time to result in response to low analyte concentrations. Here, we report a strategy for the amplification of electrochemical signals associated with DNA hybridization, by harnessing the programmability of the DNA origami method to construct a sandwich assay to boost charge transfer resistance (RCT) associated with target detection. This allowed for an improvement in the sensor limit of detection by two orders of magnitude compared to a conventional label-free e-DNA biosensor design and linearity for target concentrations between 10 pM and 1 nM without the requirement for probe labeling or enzymatic support. Additionally, this sensor design proved capable of achieving a high degree of strand selectivity in a challenging DNA-rich environment. This approach serves as a practical method for addressing strict sensitivity requirements necessary for a low-cost point-of-care device.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , DNA/genética , Hibridização de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
14.
PLoS One ; 18(6): e0287824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37368910

RESUMO

Tetracycline antibiotics are used extensively in veterinary medicine, but the majority of the administrated dose is eliminated unmodified from the animal through various excretion routes including urine, faeces and milk. In dairy animals, limits on residues secreted in milk are strictly controlled by legislation. Tetracyclines (TCs) have metal chelation properties and form strong complexes with iron ions under acidic conditions. In this study, we exploit this property as a strategy for low cost, rapid electrochemical detection of TC residues. TC-Fe(III) complexes in a ratio of 2:1 were created in acidic conditions (pH 2.0) and electrochemically measured on plasma-treated gold electrodes modified with electrodeposited gold nanostructures. DPV measurements showed a reduction peak for the TC-Fe(III) complex that was observed at 50 mV (vs. Ag/AgCl QRE). The limit of detection in buffer media was calculated to be 345 nM and was responsive to increasing TC concentrations up to 2 mM, added to 1 mM FeCl3. Whole milk samples were processed to remove proteins and then spiked with tetracycline and Fe(III) to explore the specificity and sensitivity in a complex matrix with minimal sample preparation, under these conditions the LoD was 931 nM. These results demonstrate a route towards an easy-to-use sensor system for identification of TC in milk samples taking advantage of the metal chelating properties of this antibiotic class.


Assuntos
Ouro , Tetraciclina , Animais , Tetraciclina/análise , Leite/química , Compostos Férricos/química , Antibacterianos/química , Tetraciclinas/análise , Quelantes , Eletrodos
15.
Philos Trans R Soc Lond B Biol Sci ; 376(1831): 20200228, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34176326

RESUMO

The goal of achieving enhanced diagnosis and continuous monitoring of human health has led to a vibrant, dynamic and well-funded field of research in medical sensing and biosensor technologies. The field has many sub-disciplines which focus on different aspects of sensor science; engaging engineers, chemists, biochemists and clinicians, often in interdisciplinary teams. The trends which dominate include the efforts to develop effective point of care tests and implantable/wearable technologies for early diagnosis and continuous monitoring. This review will outline the current state of the art in a number of relevant fields, including device engineering, chemistry, nanoscience and biomolecular detection, and suggest how these advances might be employed to develop effective systems for measuring physiology, detecting infection and monitoring biomarker status in wild animals. Special consideration is also given to the emerging threat of antimicrobial resistance and in the light of the current SARS-CoV-2 outbreak, zoonotic infections. Both of these areas involve significant crossover between animal and human health and are therefore well placed to seed technological developments with applicability to both human and animal health and, more generally, the reviewed technologies have significant potential to find use in the measurement of physiology in wild animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.


Assuntos
Técnicas Biossensoriais/instrumentação , COVID-19/diagnóstico , Biologia Sintética/métodos , Dispositivos Eletrônicos Vestíveis , Infecção por Zika virus/veterinária , Zoonoses/diagnóstico , Animais , Animais Selvagens/microbiologia , Animais Selvagens/parasitologia , Animais Selvagens/virologia , Biomarcadores/análise , Engenharia Celular/métodos , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Testes Imediatos , Infecção por Zika virus/diagnóstico
16.
ACS Sens ; 6(10): 3773-3780, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34595928

RESUMO

Isothermal amplification reactions represent an important and exciting approach to achieve widespread, low cost, and easily implemented molecular diagnostics. This work presents a modified recombinase polymerase amplification (RPA) reaction, which can be directly coupled to a simple electrochemical measurement to ultimately allow development of a nucleic acid-based assay for antibiotic resistance genes. It is shown that use of reagents from a standard RPA reaction kit allows incorporation of horse radish peroxidase-labeled thymine nucleotides into amplified DNA strands, which can be detected via an amperometric signal readout for detection of important gene sequences. The assay is exemplified through detection of fragments of the oxacillin resistance gene in Escherichia coli cells bearing a drug resistance plasmid, achieving a potential limit of detection of 319 cfus/mL and an unoptimized time to result of 60 min. This work serves as a suitable demonstration of the potential for a system to deliver detection of key drug resistance genes at clinically relevant levels.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Oxacilina , Escherichia coli/genética , Peroxidase do Rábano Silvestre , Recombinases
17.
Biosensors (Basel) ; 11(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356702

RESUMO

Antimicrobial drug residues in food are strictly controlled and monitored by national laws in most territories. Tetracyclines are a major broad-spectrum antibiotic class, active against a wide range of Gram-positive and Gram-negative bacteria, and they are the leading choice for the treatment of many conditions in veterinary medicine in recent years. In dairy farms, milk from cows being treated with antibiotic drugs, such as tetracyclines, is considered unfit for human consumption. Contamination of the farm bulk tank with milk containing these residues presents a threat to confidence of supply and results in financial losses to farmers and dairy. Real-time monitoring of milk production for antimicrobial residues could reduce this risk and help to minimise the release of residues into the environment where they can cause reservoirs of antimicrobial resistance. In this article, we review the existing literature for the detection of tetracyclines in cow's milk. Firstly, the complex nature of the milk matrix is described, and the test strategies in commercial use are outlined. Following this, emerging biosensors in the low-cost biosensors field are contrasted against each other, focusing upon electrochemical biosensors. Existing commercial tests that identify antimicrobial residues within milk are largely limited to beta-lactam detection, or non-specific detection of microbial inhibition, with tests specific to tetracycline residues less prevalent. Herein, we review a number of emerging electrochemical biosensor detection strategies for tetracyclines, which have the potential to close this gap and address the industry challenges associated with existing tests.


Assuntos
Leite/química , Tetraciclinas/análise , Animais , Antibacterianos , Técnicas Biossensoriais , Bovinos , Indústria de Laticínios , Resíduos de Drogas , Feminino , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Tetraciclina
18.
ACS Sens ; 6(9): 3262-3272, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34478275

RESUMO

A point-of-care blood test for the detection of an emerging biomarker, CCL17/TARC, could prove transformative for the clinical management of classic Hodgkin lymphoma (cHL). Primary care diagnosis is challenging due to nonspecific clinical presentation and lack of a diagnostic test, leading to significant diagnostic delays. Treatment monitoring encounters false-positive and negative results, leading to avoidable chemotherapy toxicity, or undertreatment, impacting patient morbidity and mortality. Here, we present an amperometric CCL17/TARC immunosensor, based on the utilization of a thiolated heterobifunctional cross-linker and sandwich antibody assay, to facilitate novel primary care triage and chemotherapy monitoring strategies for cHL. The immunosensor shows excellent analytical performance for clinical testing; linearity (R2 = 0.986), detection limit (194 pg/mL), and lower and upper limits of quantitation (387-50 000 pg/mL). The biosensor differentiated all 42 newly diagnosed cHL patients from healthy volunteers, based on serum CCL17/TARC concentration, using blood samples collected prior to treatment intervention. The immunosensor also discriminated between paired blood samples of all seven cHL patients, respectively, collected prior to treatment and during chemotherapy, attributed to the decrease in serum CCL17/TARC concentration following chemotherapy response. Overall, we have shown, for the first time, the potential of an electrochemical CCL17/TARC biosensor for primary care triage and chemotherapy monitoring for cHL, which would have positive clinical and psychosocial implications for patients, while streamlining current healthcare pathways.


Assuntos
Técnicas Biossensoriais , Quimiocina CCL17/sangue , Doença de Hodgkin , Técnicas Eletroquímicas , Doença de Hodgkin/diagnóstico , Doença de Hodgkin/tratamento farmacológico , Humanos , Imunoensaio , Triagem
19.
Biosensors (Basel) ; 11(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562505

RESUMO

Circulating tumour DNA (ctDNA) is widely used in liquid biopsies due to having a presence in the blood that is typically in proportion to the stage of the cancer and because it may present a quick and practical method of capturing tumour heterogeneity. This paper outlines a simple electrochemical technique adapted towards point-of-care cancer detection and treatment monitoring from biofluids using a label-free detection strategy. The mutations used for analysis were the KRAS G12D and G13D mutations, which are both important in the initiation, progression and drug resistance of many human cancers, leading to a high mortality rate. A low-cost DNA sensor was developed to specifically investigate these common circulating tumour markers. Initially, we report on some developments made in carbon surface pre-treatment and the electrochemical detection scheme which ensure the most sensitive measurement technique is employed. Following pre-treatment of the sensor to ensure homogeneity, DNA probes developed specifically for detection of the KRAS G12D and G13D mutations were immobilized onto low-cost screen printed carbon electrodes using diazonium chemistry and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide coupling. Prior to electrochemical detection, the sensor was functionalised with target DNA amplified by standard and specialist PCR methodologies (6.3% increase). Assay development steps and DNA detection experiments were performed using standard voltammetry techniques. Sensitivity (as low as 0.58 ng/µL) and specificity (>300%) was achieved by detecting mutant KRAS G13D PCR amplicons against a background of wild-type KRAS DNA from the representative cancer sample and our findings give rise to the basis of a simple and very low-cost system for measuring ctDNA biomarkers in patient samples. The current time to receive results from the system was 3.5 h with appreciable scope for optimisation, thus far comparing favourably to the UK National Health Service biopsy service where patients can wait for weeks for biopsy results.


Assuntos
Técnicas Biossensoriais , Mutação Puntual , DNA , Técnicas Eletroquímicas , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Mutação , Proteínas Proto-Oncogênicas p21(ras)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA