Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Gastric Cancer ; 27(3): 473-483, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38261067

RESUMO

BACKGROUND: Gastric cancer (GC) is the third leading cause of cancer-related death worldwide, with a poor prognosis for patients with advanced disease. Since the oncogenic role of KRAS mutants has been poorly investigated in GC, this study aims to biochemically and biologically characterize different KRAS-mutated models and unravel differences among KRAS mutants in response to therapy. METHODS: Taking advantage of a proprietary, molecularly annotated platform of more than 200 GC PDXs (patient-derived xenografts), we identified KRAS-mutated PDXs, from which primary cell lines were established. The different mutants were challenged with KRAS downstream inhibitors in in vitro and in vivo experiments. RESULTS: Cells expressing the rare KRAS A146T mutant showed lower RAS-GTP levels compared to those bearing the canonical G12/13D mutations. Nevertheless, all the KRAS-mutated cells displayed KRAS addiction. Surprisingly, even if the GEF SOS1 is considered critical for the activation of KRAS A146T mutants, its abrogation did not significantly affect cell viability. From the pharmacologic point of view, Trametinib monotherapy was more effective in A146T than in G12D-mutated models, suggesting a vulnerability to MEK inhibition. However, in the presence of mutations in the PI3K pathway, more frequently co-occurrent in A146T models, the association of Trametinib and the AKT inhibitor MK-2206 was required to optimize the response. CONCLUSION: A deeper genomic and biological characterization of KRAS mutants might sustain the development of more efficient and long-lasting therapeutic options for patients harbouring KRAS-driven GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fosfatidilinositol 3-Quinases/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral
2.
Gastric Cancer ; 24(4): 897-912, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755862

RESUMO

BACKGROUND: Trastuzumab is the only approved targeted therapy in patients with HER2-amplified metastatic gastric cancer (GC). Regrettably, in clinical practice, only a fraction of them achieves long-term benefit from trastuzumab-based upfront strategy. To advance precision oncology, we investigated the therapeutic efficacy of different HER2-targeted strategies, in HER2 "hyper"-amplified (≥ 8 copies) tumors. METHODS: We undertook a prospective evaluation of HER2 targeting with monoclonal antibodies, tyrosine kinase inhibitors and antibody-drug conjugates, in a selected subgroup of HER2 "hyper"-amplified gastric patient-derived xenografts (PDXs), through the design of ad hoc preclinical trials. RESULTS: Despite the high level of HER2 amplification, trastuzumab elicited a partial response only in 2 out of 8 PDX models. The dual-HER2 blockade with trastuzumab plus either pertuzumab or lapatinib led to complete and durable responses in 5 (62.5%) out of 8 models, including one tumor bearing a concomitant HER2 mutation. In a resistant PDX harboring KRAS amplification, the novel antibody-drug conjugate trastuzumab deruxtecan (but not trastuzumab emtansine) overcame KRAS-mediated resistance. We also identified a HGF-mediated non-cell-autonomous mechanism of secondary resistance to anti-HER2 drugs, responsive to MET co-targeting. CONCLUSION: These preclinical randomized trials clearly indicate that in HER2-driven gastric tumors, a boosted HER2 therapeutic blockade is required for optimal efficacy, leading to complete and durable responses in most of the cases. Our results suggest that a selected subpopulation of HER2-"hyper"-amplified GC patients could strongly benefit from this strategy. Despite the negative results of clinical trials, the dual blockade should be reconsidered for patients with clearly HER2-addicted cancers.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medicina de Precisão/métodos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Humanos , Imunoconjugados/uso terapêutico , Estudos Prospectivos , Proteínas Tirosina Quinases/antagonistas & inibidores , Neoplasias Gástricas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592373

RESUMO

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Assuntos
Adenocarcinoma , Reparo do DNA , Neoplasias Esofágicas , Oxaliplatina , Proteína Smad3 , Animais , Humanos , Camundongos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Organoides/efeitos dos fármacos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Adv ; 10(11): eadh4435, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489371

RESUMO

Oncogenic mutations accumulating in many chromatin-associated proteins have been identified in different tumor types. With a mutation rate from 10 to 57%, ARID1A has been widely considered a tumor suppressor gene. However, whether this role is mainly due to its transcriptional-related activities or its ability to preserve genome integrity is still a matter of intense debate. Here, we show that ARID1A is largely dispensable for preserving enhancer-dependent transcriptional regulation, being ARID1B sufficient and required to compensate for ARID1A loss. We provide in vivo evidence that ARID1A is mainly required to preserve genomic integrity in adult tissues. ARID1A loss primarily results in DNA damage accumulation, interferon type I response activation, and chronic inflammation leading to tumor formation. Our data suggest that in healthy tissues, the increased genomic instability that follows ARID1A mutations and the selective pressure imposed by the microenvironment might result in the emergence of aggressive, possibly immune-resistant, tumors.


Assuntos
Neoplasias , Proteínas Nucleares , Humanos , Instabilidade Genômica , Mutação , Taxa de Mutação , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Microambiente Tumoral , Animais , Camundongos
5.
Blood ; 117(2): 419-28, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20585044

RESUMO

Mechanisms governing stress-induced hematopoietic progenitor cell mobilization are not fully deciphered. We report that during granulocyte colony-stimulating factor-induced mobilization c-Met expression and signaling are up-regulated on immature bone marrow progenitors. Interestingly, stromal cell-derived factor 1/CXC chemokine receptor-4 signaling induced hepatocyte growth factor production and c-Met activation. We found that c-Met inhibition reduced mobilization of both immature progenitors and the more primitive Sca-1(+)/c-Kit(+)/Lin(-) cells and interfered with their enhanced chemotactic migration to stromal cell-derived factor 1. c-Met activation resulted in cellular accumulation of reactive oxygen species by mammalian target of rapamycin inhibition of Forkhead Box, subclass O3a. Blockage of mammalian target of rapamycin inhibition or reactive oxygen species signaling impaired c-Met-mediated mobilization. Our data show dynamic c-Met expression and function in the bone marrow and show that enhanced c-Met signaling is crucial to facilitate stress-induced mobilization of progenitor cells as part of host defense and repair mechanisms.


Assuntos
Movimento Celular/fisiologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Quimiocina CXCL12/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Fator de Crescimento de Hepatócito/metabolismo , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cell Oncol (Dordr) ; 46(3): 661-676, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36753044

RESUMO

PURPOSE: Trastuzumab is an HER2-specific agent approved as the gold-standard therapy for advanced HER2-positive (HER2+) gastric cancer (GC), but the high rate and rapid appearance of resistance limit its clinical efficacy, resulting in the need to identify new vulnerabilities. Defining the drivers influencing HER2+ cancer stem cell (CSC) maintenance/survival could represent a clinically useful strategy to counteract tumor growth and therapy resistance. Accumulating evidence show that targeting crucial metabolic hubs, as the fatty acid synthase (FASN), may be clinically relevant. METHODS: FASN protein and transcript expression were examined by WB and FACS and by qRT-PCR and GEP analyses, respectively, in trastuzumab-sensitive and trastuzumab-resistant HER2+ GC cell lines cultured in adherent (2D) or gastrosphere promoting (3D) conditions. Molecular data were analyzed in silico in public HER2+ GC datasets. The effectiveness of the FASN inhibitor TVB3166 to overcome anti-HER2 therapy resistance was tested in vitro in gastrospheres forming efficiency bioassays and in vivo in mice bearing trastuzumab-resistant GC cells. RESULTS: We compared the transcriptome profiles of HER2+ GC cells cultured in 2D versus 3D conditions finding a significant enrichment of FASN in 3D cultures. FASN upregulation significantly correlated with high stemness score and poor prognosis in HER2+ GC cases. TVB3166 treatment significantly decreased GCSCs in all cell targets. HER2 and FASN cotargeting significantly decreased the capability to form gastrospheres versus monotherapy and reduced the in vivo growth of trastuzumab-resistant GC cells. CONCLUSION: Our findings indicate that cotargeting HER2 and FASN increase the benefit of anti-HER2 therapy representing a new opportunity for metabolically combating trastuzumab-resistant HER2+ GC.


Assuntos
Receptor ErbB-2 , Neoplasias Gástricas , Animais , Camundongos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/patologia , Trastuzumab/farmacologia , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/uso terapêutico , Linhagem Celular Tumoral
7.
Clin Cancer Res ; 29(3): 571-580, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413222

RESUMO

PURPOSE: In JACOB trial, pertuzumab added to trastuzumab-chemotherapy did not significantly improve survival of patients with HER2-positive metastatic gastric cancer, despite 3.3 months increase versus placebo. HER2 copy-number variation (CNV) and AMNESIA panel encompassing primary resistance alterations (KRAS/PIK3CA/MET mutations, KRAS/EGFR/MET amplifications) may improve patients' selection for HER2 inhibition. EXPERIMENTAL DESIGN: In a post hoc analysis of JACOB on 327 samples successfully sequenced by next-generation sequencing (NGS; Oncomine Focus DNA), HER2 CNV, HER2 expression by IHC, and AMNESIA were correlated with overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) by univariable/multivariable models. RESULTS: Median HER2 CNV was 4.7 (interquartile range, 2.2-16.9). HER2 CNV-high versus low using the median as cutoff was associated with longer median PFS (10.5 vs. 6.4 months; HR = 0.48; 95% confidence interval: 0.38-0.62; P < 0.001) and OS (20.3 vs. 13.0 months; HR = 0.54; 0.42-0.72; P < 0.001). Combining HER2 CNV and IHC improved discriminative ability, with better outcomes restricted to HER2-high/HER2 3+ subgroup. AMNESIA positivity was found in 51 (16%), with unadjusted HR = 1.35 (0.98-1.86) for PFS; 1.43 (1.00-2.03) for OS.In multivariable models, only HER2 CNV status remained significant for PFS (P < 0.001) and OS (P = 0.004). Higher ORR was significantly associated with IHC 3+ [61% vs. 34% in 2+; OR = 3.11 (1.89-5.17)] and HER2-high [59% vs. 43% in HER2-low; OR = 1.84 (1.16-2.94)], with highest OR in the top CNV quartile. These biomarkers were not associated with treatment effect of pertuzumab. CONCLUSIONS: HER2 CNV-high assessed by NGS may be associated with better ORR, PFS, and OS in a JACOB subgroup, especially if combined with HER2 3+. The negative prognostic role of AMNESIA requires further clinical validation.


Assuntos
Neoplasias da Mama , Neoplasias Gástricas , Humanos , Feminino , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Variações do Número de Cópias de DNA , Proteínas Proto-Oncogênicas p21(ras)/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico
8.
Cancer Res ; 83(10): 1699-1710, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129948

RESUMO

Despite negative results of clinical trials conducted on the overall population of patients with gastric cancer, PARP inhibitor (PARPi) therapeutic strategy still might represent a window of opportunity for a subpopulation of patients with gastric cancer. An estimated 7% to 12% of gastric cancers exhibit a mutational signature associated with homologous recombination (HR) failure, suggesting that these patients could potentially benefit from PARPis. To analyze responsiveness of gastric cancer to PARPi, we exploited a gastroesophageal adenocarcinoma (GEA) platform of patient-derived xenografts (PDX) and PDX-derived primary cells and selected 10 PDXs with loss-of-function mutations in HR pathway genes. Cell viability assays and preclinical trials showed that olaparib treatment was effective in PDXs harboring BRCA2 germline mutations and somatic inactivation of the second allele. Olaparib responsive tumors were sensitive to oxaliplatin as well. Evaluation of HR deficiency (HRD) and mutational signatures efficiently stratified responder and nonresponder PDXs. A retrospective analysis on 57 patients with GEA showed that BRCA2 inactivating variants were associated with longer progression-free survival upon platinum-based regimens. Five of 7 patients with BRCA2 germline mutations carried the p.K3326* variant, classified as "benign." However, familial history of cancer, the absence of RAD51 foci in tumor cells, and a high HRD score suggest a deleterious effect of this mutation in gastric cancer. In conclusion, PARPis could represent an effective therapeutic option for BRCA2-mutated and/or high HRD score patients with GEA, including patients with familial intestinal gastric cancer. SIGNIFICANCE: PARP inhibition is a potential strategy for treating patients with gastric cancer with mutated BRCA2 or homologous repair deficiency, including patients with familial intestinal gastric cancer, for whom BRCA2 germline testing should be recommended.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Neoplasias Gástricas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutação em Linhagem Germinativa , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Estudos Retrospectivos , Proteína BRCA1/genética , Proteína BRCA2/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico
9.
J Exp Clin Cancer Res ; 41(1): 319, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36324182

RESUMO

In the last two decades, clinical oncology has been revolutionized by the advent of targeted drugs. However, the efficacy of these therapies is significantly limited by primary and acquired resistance, that relies not only on cell-autonomous mechanisms but also on tumor microenvironment cues. Cancer-associated fibroblasts (CAFs) are extremely plastic cells of the tumor microenvironment. They not only produce extracellular matrix components that build up the structure of tumor stroma, but they also release growth factors, chemokines, exosomes, and metabolites that affect all tumor properties, including response to drug treatment. The contribution of CAFs to tumor progression has been deeply investigated and reviewed in several works. However, their role in resistance to anticancer therapies, and in particular to molecular therapies, has been largely overlooked. This review specifically dissects the role of CAFs in driving resistance to targeted therapies and discusses novel CAF targeted therapeutic strategies to improve patient survival.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral , Exossomos/metabolismo
10.
J Exp Clin Cancer Res ; 41(1): 112, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351166

RESUMO

BACKGROUND: The tyrosine kinase receptor encoded by the MET oncogene is a major player in cancer. When MET is responsible for the onset and progression of the transformed phenotype (MET-addicted cancers), an efficient block of its oncogenic activation results in potent tumor growth inhibition. METHODS: Here we describe a molecular engineered MET antibody (hOA-DN30) and validate its pharmacological activity in MET-addicted cancer models in vitro and in vivo. Pharmacokinetics and safety profile in non-human primates have also been assessed. RESULTS: hOA-DN30 efficiently impaired MET activation and the intracellular signalling cascade by dose and time dependent removal of the receptor from the cell surface (shedding). In vitro, the antibody suppressed cell growth by blocking cell proliferation and by concomitantly inducing cell death in multiple MET-addicted human tumor cell lines. In mice xenografts, hOA-DN30 induced an impressive reduction of tumor masses, with a wide therapeutic window. Moreover, the antibody showed high therapeutic efficacy against patient-derived xenografts generated from MET-addicted gastric tumors, leading to complete tumor regression and long-lasting effects after treatment discontinuation. Finally, hOA-DN30 showed a highly favorable pharmacokinetic profile and substantial tolerability in Cynomolgus monkeys. CONCLUSIONS: hOA-DN30 unique ability to simultaneously erase cell surface MET and release the 'decoy' receptor extracellular region results in a paramount MET blocking action. Its remarkable efficacy in a large number of pre-clinical models, as well as its pharmacological features and safety profile in non-human primates, strongly envisage a successful clinical application of this novel single-arm MET therapeutic antibody for the therapy of MET-addicted cancers.


Assuntos
Proteínas Proto-Oncogênicas c-met , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
11.
Transl Oncol ; 15(1): 101260, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735897

RESUMO

Gastric cancer (GC) is frequently characterized by resistance to standard chemotherapeutic regimens and poor clinical outcomes. We aimed to identify a novel therapeutic approach using drug sensitivity testing (DST) and our computational SynerySeq pipeline. DST of GC cell lines was performed with a library of 215 Federal Drug Administration (FDA) approved compounds and identified clofarabine as a potential therapeutic agent. RNA-sequencing (RNAseq) of clofarabine treated GC cells was analyzed according to our SynergySeq pipeline and identified pictilisib as a potential synergistic agent. Clonogenic survival and Annexin V assays demonstrated increased cell death with clofarabine and pictilisib combination treatment (P<0.01). The combination induced double strand breaks (DSB) as indicated by phosphorylated H2A histone family member X (γH2AX) immunofluorescence and western blot analysis (P<0.01). Pictilisib treatment inhibited the protein kinase B (AKT) cell survival pathway and promoted a pro-apoptotic phenotype as evidenced by quantitative real time polymerase chain reaction (qRT-PCR) analysis of the B-cell lymphoma 2 (BCL2) protein family members (P<0.01). Patient derived xenograft (PDX) data confirmed that the combination is more effective in abrogating tumor growth with prolonged survival than single-agent treatment (P<0.01). The novel combination of clofarabine and pictilisib in GC promotes DNA damage and inhibits key cell survival pathways to induce cell death beyond single-agent treatment.

12.
J Biol Chem ; 285(50): 38756-64, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20937830

RESUMO

CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that ß4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and ß4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of ß4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through ß4 integrin-mediated pathways, independent of cell-substrate adhesion.


Assuntos
Antígenos CD/fisiologia , Regulação Neoplásica da Expressão Gênica , Integrina beta4/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Laminina/metabolismo , Camundongos , Transplante de Neoplasias , Interferência de RNA , Transdução de Sinais , Tetraspanina 24
13.
Nat Cell Biol ; 4(9): 720-4, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12198496

RESUMO

Semaphorins are cell surface and soluble signals that control axonal guidance. Recently, semaphorin receptors (plexins) have been discovered and shown to be widely expressed. Their biological activities outside the nervous system and the signal transduction mechanism(s) they utilize are largely unknown. Here, we show that in epithelial cells, Semaphorin 4D (Sema 4D) triggers invasive growth, a complex programme that includes cell#150;cell dissociation, anchorage-independent growth and branching morphogenesis. Interestingly, the same response is also controlled by scatter factors through their tyrosine kinase receptors, which share striking structural homology with plexins in their extracellular domain. We found that in cells expressing the endogenous proteins, Plexin B1 (the Sema 4D Receptor) and Met (the Scatter Factor 1/ Hepatocyte Growth Factor Receptor) associate in a complex. In addition, binding of Sema 4D to Plexin B1 stimulates the tyrosine kinase activity of Met, resulting in tyrosine phosphorylation of both receptors. Finally, cells lacking Met expression do not respond to Sema 4D unless exogenous Met is expressed. This work identifies a novel biological function of semaphorins and suggests the involvement of an unexpected signalling mechanism, namely, the coupling of a plexin to a tyrosine kinase receptor.


Assuntos
Antígenos CD , Glicoproteínas de Membrana/fisiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Semaforinas , Sequência de Aminoácidos , Animais , Sequência de Bases , Divisão Celular , Linhagem Celular , DNA Complementar/genética , Hepatócitos/citologia , Hepatócitos/fisiologia , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/fisiologia , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/genética , Receptores de Superfície Celular/fisiologia , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/fisiologia
14.
Nat Med ; 9(11): 1363-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14556002

RESUMO

Plasmodium, the causative agent of malaria, must first infect hepatocytes to initiate a mammalian infection. Sporozoites migrate through several hepatocytes, by breaching their plasma membranes, before infection is finally established in one of them. Here we show that wounding of hepatocytes by sporozoite migration induces the secretion of hepatocyte growth factor (HGF), which renders hepatocytes susceptible to infection. Infection depends on activation of the HGF receptor, MET, by secreted HGF. The malaria parasite exploits MET not as a primary binding site, but as a mediator of signals that make the host cell susceptible to infection. HGF/MET signaling induces rearrangements of the host-cell actin cytoskeleton that are required for the early development of the parasites within hepatocytes. Our findings identify HGF and MET as potential targets for new approaches to malaria prevention.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/metabolismo , Malária/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Actinas/metabolismo , Animais , Camundongos , Plasmodium/metabolismo , Transdução de Sinais/fisiologia
15.
Cancer Treat Rev ; 95: 102175, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33721595

RESUMO

Gastric cancer (GC) represents an important contributor to the global burden of cancer, being one of the most common and deadly malignancies worldwide. According to TCGA and ACRG classifications, the microsatellite instable (MSI) group represents a significant subset of GCs and is currently in the limelight of many researches due to its favorable survival outcome in resectable stages compared to microsatellite stable tumors. MSI GCs hypermutated phenotype triggers immunosurveillance, making this molecular subgroup a promising candidate for immune checkpoint inhibitors treatment. Conversely, conflicting outcomes have been reported in chemotherapy settings. Due to the clinical relevance of these observations, in this review we report and discuss the molecular, pathological, prognostic, and predictive features of MSI gastric tumors.


Assuntos
Antineoplásicos/uso terapêutico , Instabilidade de Microssatélites , Neoplasias Gástricas/tratamento farmacológico , Animais , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
16.
Cancers (Basel) ; 13(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34439248

RESUMO

Many phase III trials failed to demonstrate a survival benefit from the addition of molecular therapy to conventional chemotherapy for advanced and metastatic gastric cancer, and only three agents were approved by the FDA. We examined the efficacy and safety of novel drugs recently investigated. PubMed, Embase and Cochrane Library were searched for phase III randomized controlled trials published from January 2016 to December 2020. Patients in the experimental arm received molecular therapy with or without conventional chemotherapy, while those in the control arm had conventional chemotherapy alone. The primary outcomes were overall and progression-free survival. The secondary outcomes were the rate of tumor response, severe adverse effects, and quality of life. Eight studies with a total of 4223 enrolled patients were included. The overall and progression-free survival of molecular and conventional therapy were comparable. Most of these trials did not find a significant difference in tumor response rate and in the number of severe adverse effects and related deaths between the experimental and control arms. The survival benefits of molecular therapies available to date for advanced and metastatic gastric cancer are rather unclear, mostly due to inaccurate patient selection, particularly concerning oncogene amplification and copy number.

17.
Clin Cancer Res ; 27(11): 3126-3140, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33542076

RESUMO

PURPOSE: Gastric and gastroesophageal adenocarcinomas represent the third leading cause of cancer mortality worldwide. Despite significant therapeutic improvement, the outcome of patients with advanced gastroesophageal adenocarcinoma is poor. Randomized clinical trials failed to show a significant survival benefit in molecularly unselected patients with advanced gastroesophageal adenocarcinoma treated with anti-EGFR agents. EXPERIMENTAL DESIGN: We performed analyses on four cohorts: IRCC (570 patients), Foundation Medicine, Inc. (9,397 patients), COG (214 patients), and the Fondazione IRCCS Istituto Nazionale dei Tumori (206 patients). Preclinical trials were conducted in patient-derived xenografts (PDX). RESULTS: The analysis of different gastroesophageal adenocarcinoma patient cohorts suggests that EGFR amplification drives aggressive behavior and poor prognosis. We also observed that EGFR inhibitors are active in patients with EGFR copy-number gain and that coamplification of other receptor tyrosine kinases or KRAS is associated with worse response. Preclinical trials performed on EGFR-amplified gastroesophageal adenocarcinoma PDX models revealed that the combination of an EGFR mAb and an EGFR tyrosine kinase inhibitor (TKI) was more effective than each monotherapy and resulted in a deeper and durable response. In a highly EGFR-amplified nonresponding PDX, where resistance to EGFR drugs was due to inactivation of the TSC2 tumor suppressor, cotreatment with the mTOR inhibitor everolimus restored sensitivity to EGFR inhibition. CONCLUSIONS: This study underscores EGFR as a potential therapeutic target in gastric cancer and identifies the combination of an EGFR TKI and a mAb as an effective therapeutic approach. Finally, it recognizes mTOR pathway activation as a novel mechanism of primary resistance that can be overcome by the combination of EGFR and mTOR inhibitors.See related commentary by Openshaw et al., p. 2964.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Anticorpos Monoclonais/uso terapêutico , Neoplasias Esofágicas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Animais , Estudos de Coortes , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Camundongos , Terapia de Alvo Molecular , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
18.
Mol Cancer ; 9: 121, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20500904

RESUMO

BACKGROUND: Gastric cancer is the second leading cause of cancer mortality in the world. The receptor tyrosine kinase MET is constitutively activated in many gastric cancers and its expression is strictly required for survival of some gastric cancer cells. Thus, MET is considered a good candidate for targeted therapeutic intervention in this type of tumor, and MET inhibitors recently entered clinical trials. One of the major problems of therapies targeting tyrosine kinases is that many tumors are not responsive to treatment or eventually develop resistance to the drugs. Perspective studies are thus mandatory to identify the molecular mechanisms that could cause resistance to these therapies. RESULTS: Our in vitro and in vivo results demonstrate that, in MET-addicted gastric cancer cells, the activation of HER (Human Epidermal Receptor) family members induces resistance to MET silencing or inhibition by PHA-665752 (a selective kinase inhibitor). We provide molecular evidences highlighting the role of EGFR, HER3, and downstream signaling pathways common to MET and HER family in resistance to MET inhibitors. Moreover, we show that an in vitro generated gastric cancer cell line resistant to MET-inhibition displays overexpression of HER family members, whose activation contributes to maintenance of resistance. CONCLUSIONS: Our findings predict that gastric cancer tumors bearing constitutive activation of HER family members are poorly responsive to MET inhibition, even if this receptor is constitutively active. Moreover, the appearance of these alterations might also be responsible for the onset of resistance in initially responsive tumors.


Assuntos
Adenocarcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo , Adenocarcinoma/genética , Animais , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Receptores Proteína Tirosina Quinases/genética , Receptores de Fatores de Crescimento/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancers (Basel) ; 12(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333972

RESUMO

For many decades, basic and preclinical cancer research has been based on the use of established, commercially available cell lines, originally derived from patients' samples but adapted to grow indefinitely in artificial culture conditions, and on xenograft models developed by injection of these cells in immunocompromised animals [...].

20.
Cancers (Basel) ; 12(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784465

RESUMO

Melanoma cells addicted to mutated BRAF oncogene activity can be targeted by specific kinase inhibitors until they develop resistance to therapy. We observed that the expression of Galectin-1 (Gal-1), a soluble ligand of Neuropilin-1 (NRP1), is upregulated in melanoma tumor samples and melanoma cells resistant to BRAF-targeted therapy. We then demonstrated that Gal-1 is a novel driver of resistance to BRAF inhibitors in melanoma and that its activity is linked to the concomitant upregulation of the NRP1 receptor observed in drug-resistant cells. Mechanistically, Gal-1 sustains increased expression of NRP1 and EGFR in drug-resistant melanoma cells. Moreover, consistent with its role as a NRP1 ligand, Gal-1 negatively controls p27 levels, a mechanism previously found to enable EGFR upregulation in cancer cells. Finally, the combined treatment with a Gal-1 inhibitor and a NRP1 blocking drug enabled resistant melanoma cell resensitization to BRAF-targeted therapy. In summary, we found that the activation of Galectin-1/NRP1 autocrine signaling is a new mechanism conferring independence from BRAF kinase activity to oncogene-addicted melanoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA