Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Phylogenet Evol ; 199: 108141, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38964593

RESUMO

Platyhelminthes, also known as flatworms, is a phylum of bilaterian invertebrates infamous for their parasitic representatives. The classes Cestoda, Monogenea, and Trematoda comprise parasitic helminths inhabiting multiple hosts, including fishes, humans, and livestock, and are responsible for considerable economic damage and burden on human health. As in other animals, the genomes of flatworms have a wide variety of paralogs, genes related via duplication, whose origins could be mapped throughout the evolution of the phylum. Through in-silico analysis, we studied inparalogs, i.e., species-specific duplications, focusing on their biological functions, expression changes, and evolutionary rate. These genes are thought to be key players in the adaptation process of species to each particular niche. Our results showed that genes related with specific functional terms, such as response to stress, transferase activity, oxidoreductase activity, and peptidases, are overrepresented among inparalogs. This trend is conserved among species from different classes, including free-living species. Available expression data from Schistosoma mansoni, a parasite from the trematode class, demonstrated high conservation of expression patterns between inparalogs, but with notable exceptions, which also display evidence of rapid evolution. We discuss how natural selection may operate to maintain these genes and the particular duplication models that fit better to the observations. Our work supports the critical role of gene duplication in the evolution of flatworms, representing the first study of inparalogs evolution at the genome-wide level in this group.


Assuntos
Evolução Molecular , Duplicação Gênica , Platelmintos , Animais , Platelmintos/genética , Platelmintos/classificação , Genoma Helmíntico , Especificidade da Espécie , Filogenia
2.
Fish Shellfish Immunol ; 128: 505-522, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985628

RESUMO

Sturgeons are chondrostean fish of high economic value and critically endangered due to anthropogenic activities, which has led to sturgeon aquaculture development. Russian sturgeon (Acipenser gueldenstaedtii), the second most important species reared for caviar, is successfully farmed in subtropical countries, including Uruguay. However, during the Uruguayan summer, sturgeons face intolerable warmer temperatures that weaken their defences and favour infections by opportunistic pathogens, increasing fish mortality and farm economic losses. Since innate immunity is paramount in fish, for which the liver plays a key role, we used deep RNA sequencing to analyse differentially expressed genes in the liver of Russian sturgeons exposed to chronic heat stress and challenged with Aeromonas hydrophila. We assembled 149.615 unigenes in the Russian sturgeon liver transcriptome and found that metabolism and immune defence pathways are among the top five biological processes taking place in the liver. Chronic heat stress provoked profound effects on liver biological functions, up-regulating genes related to protein folding, heat shock response and lipid and protein metabolism to meet energy demands for coping with heat stress. Besides, long-term exposure to heat stress led to cell damage triggering liver inflammation and diminishing liver ability to mount an innate response to A. hydrophila challenge. Accordingly, the reprogramming of liver metabolism over an extended period had detrimental effects on fish health, resulting in weight loss and mortality, with the latter increasing after A. hydrophila challenge. To our knowledge, this is the first transcriptomic study describing how chronic heat-stressed sturgeons respond to a bacterial challenge, suggesting that liver metabolism alterations have a negative impact on the innate anti-bacterial response.


Assuntos
Infecções Bacterianas , Peixes , Adaptação Psicológica , Animais , Peixes/metabolismo , Resposta ao Choque Térmico , Lipídeos
3.
Parasitology ; 149(11): 1505-1514, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35787303

RESUMO

The phylum Platyhelminthes shares a unique population of undifferentiated cells responsible for the proliferation capacity needed for cell renewal, growth, tissue repair and regeneration. These cells have been extensively studied in free-living flatworms, whereas in cestodes the presence of a set of undifferentiated cells, known as germinative cells, has been demonstrated in classical morphology studies, but poorly characterized with molecular biology approaches. Furthermore, several genes have been identified as neoblast markers in free-living flatworms that deserve study in cestode models. Here, different cell types of the model cestode Mesocestoides corti were characterized, identifying differentiated and germinative cells. Muscle cells, tegumental cells, calcareous corpuscle precursor cells and excretory system cells were identified, all of which are non-proliferative, differentiated cell types. Besides those, germinative cells were identified as a population of small cells with proliferative capacity in vivo. Primary cell culture experiments in Dulbecco's Modified Eagle Medium (DMEM), Echinococcus hydatid fluid and hepatocyte conditioned media in non-reductive or reductive conditions confirmed that the germinative cells were the only ones with proliferative capacity. Since several genes have been identified as markers of undifferentiated neoblast cells in free-living flatworms, the expression of pumilio and pL10 genes was analysed by qPCR and in situ hybridization, showing that the expression of these genes was stronger in germinative cells but not restricted to this cell type. This study provides the first tools to analyse and further characterise undifferentiated cells in a model cestode.


Assuntos
Cestoides , Infecções por Cestoides , Mesocestoides , Platelmintos , Animais , Proliferação de Células , Cestoides/genética , Infecções por Cestoides/veterinária , Meios de Cultivo Condicionados , Mesocestoides/genética , Platelmintos/genética
4.
Emerg Infect Dis ; 27(11): 2957-2960, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34437831

RESUMO

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.


Assuntos
COVID-19 , SARS-CoV-2 , Genômica , Humanos , Uruguai/epidemiologia
5.
Mol Biol Evol ; 37(1): 84-99, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501870

RESUMO

Liver and intestinal flukes of the family Fasciolidae cause zoonotic food-borne infections that impact both agriculture and human health throughout the world. Their evolutionary history and the genetic basis underlying their phenotypic and ecological diversity are not well understood. To close that knowledge gap, we compared the whole genomes of Fasciola hepatica, Fasciola gigantica, and Fasciolopsis buski and determined that the split between Fasciolopsis and Fasciola took place ∼90 Ma in the late Cretaceous period, and that between 65 and 50 Ma an intermediate host switch and a shift from intestinal to hepatic habitats occurred in the Fasciola lineage. The rapid climatic and ecological changes occurring during this period may have contributed to the adaptive radiation of these flukes. Expansion of cathepsins, fatty-acid-binding proteins, protein disulfide-isomerases, and molecular chaperones in the genus Fasciola highlights the significance of excretory-secretory proteins in these liver-dwelling flukes. Fasciola hepatica and Fasciola gigantica diverged ∼5 Ma near the Miocene-Pliocene boundary that coincides with reduced faunal exchange between Africa and Eurasia. Severe decrease in the effective population size ∼10 ka in Fasciola is consistent with a founder effect associated with its recent global spread through ruminant domestication. G-protein-coupled receptors may have key roles in adaptation of physiology and behavior to new ecological niches. This study has provided novel insights about the genome evolution of these important pathogens, has generated genomic resources to enable development of improved interventions and diagnosis, and has laid a solid foundation for genomic epidemiology to trace drug resistance and to aid surveillance.


Assuntos
Evolução Biológica , Fasciolidae/genética , Genoma Helmíntico , Animais , Família Multigênica
6.
Exp Parasitol ; 181: 30-39, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28750771

RESUMO

VAL proteins belong to a diverse superfamily containing the CAP domain, with members described for various eukaryotic organisms, including parasites. They are implicated in diverse biological activities and, as secreted proteins, may be related in host - parasite interactions. For this reason they have been proposed as vaccine candidates against nematode infections. However, little is known about their function in cestodes. In M. corti, four partial cDNA sequences coding for members of the CAP superfamily were previously isolated. In this work we characterize the expression of McVAL2 in the larvae and segmented worms of M. corti, describing mRNA and protein localization using fluorescent microscopy. We also optimized real time PCR analysis for quantification of mRNA expression through the different stages of strobilar development. We show that McVAL2 is differentially located, depending on the developmental stage, and can be used as a molecular marker for the neuroendocrine system in the larvae. The dynamic and stage-specific expression patterns of McVAL2, combined with the large number of VAL proteins found in the genomes of parasitic flatworms, suggest varied roles for the VAL protein family in the biology of these parasites.


Assuntos
Proteínas de Helminto/metabolismo , Mesocestoides/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/metabolismo , DNA Complementar/química , DNA Complementar/genética , Equidae , Feminino , Expressão Gênica , Cabras , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Hibridização In Situ , Larva/genética , Larva/metabolismo , Masculino , Mesocestoides/crescimento & desenvolvimento , Mesocestoides/imunologia , Camundongos , RNA Mensageiro/análise , RNA Mensageiro/isolamento & purificação , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Virus Res ; 350: 199472, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39362411

RESUMO

Highly pathogenic influenza A virus (HPIAV) H5N1 within the genetic clade 2.3.4.4b has emerged in wild birds in different regions of the world, leading to the death of >70 million birds. When these strains spread to pinniped species a remarkable mortality has also been observed. A detailed genetic characterization of HPIAV isolated from pinnipeds is essential to understand the potential spread of these viruses to other mammalian species, including humans. To gain insight into these matters a detailed phylogenetic analysis of HPIAV H5N1 2.3.4.4b strains isolated from pinniped species was performed. The results of these studies revealed multiple transmission events from birds to pinnipeds in all world regions. Different evolutionary histories of different genes of HPIAV H5N1 2.3.4.4b strains gave rise to the viruses infecting pinnipeds in different regions of the world. European strains isolated from pinnipeds represent a completely different genetic lineage from strains isolated from South American ones. All strains isolated from pinnipeds bear characteristics of a highly pathogenic form for of avian influenza in poultry. Amino acid substitutions, previously shown to confer an adaptive advantage for infecting mammals, were observed in different genes in all pinniped species studied.

8.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200071

RESUMO

Most biologically relevant and diagnostic mutations in the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genome have been identified in the S gene through global genomic surveillance efforts. However, large-scale whole-genome sequencing (WGS) is still challenging in developing countries due to higher costs, reagent delays and limited infrastructure. Consequently, only a small fraction of SARS-CoV-2 samples are characterized through WGS in these regions. Here, we present a complete workflow consisting of a fast library preparation protocol based on tiled amplification of the S gene, followed by a PCR barcoding step and sequencing using Nanopore platforms. This protocol facilitates fast and cost-effective identification of main variants of concern and mutational surveillance of the S gene. By applying this protocol, report time and overall costs for SARS-CoV-2 variant detection could be reduced, contributing to improved genomic surveillance programmes, particularly in low-income regions.


Assuntos
COVID-19 , Nanoporos , Humanos , SARS-CoV-2/genética , Análise Custo-Benefício , COVID-19/diagnóstico
9.
Front Cell Infect Microbiol ; 13: 1095060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424790

RESUMO

During Mycobacterium tuberculosis (Mtb) infection, the virulence factor PtpA belonging to the protein tyrosine phosphatase family is delivered into the cytosol of the macrophage. PtpA interacts with numerous eukaryotic proteins modulating phagosome maturation, innate immune response, apoptosis, and potentially host-lipid metabolism, as previously reported by our group. In vitro, the human trifunctional protein enzyme (hTFP) is a bona fide PtpA substrate, a key enzyme of mitochondrial ß-oxidation of long-chain fatty acids, containing two alpha and two beta subunits arranged in a tetramer structure. Interestingly, it has been described that the alpha subunit of hTFP (ECHA, hTFPα) is no longer detected in mitochondria during macrophage infection with the virulent Mtb H37Rv. To better understand if PtpA could be the bacterial factor responsible for this effect, in the present work, we studied in-depth the PtpA activity and interaction with hTFPα. With this aim, we performed docking and in vitro dephosphorylation assays defining the P-Tyr-271 as the potential target of mycobacterial PtpA, a residue located in the helix-10 of hTFPα, previously described as relevant for its mitochondrial membrane localization and activity. Phylogenetic analysis showed that Tyr-271 is absent in TFPα of bacteria and is present in more complex eukaryotic organisms. These results suggest that this residue is a specific PtpA target, and its phosphorylation state is a way of regulating its subcellular localization. We also showed that phosphorylation of Tyr-271 can be catalyzed by Jak kinase. In addition, we found by molecular dynamics that PtpA and hTFPα form a stable protein complex through the PtpA active site, and we determined the dissociation equilibrium constant. Finally, a detailed study of PtpA interaction with ubiquitin, a reported PtpA activator, showed that additional factors are required to explain a ubiquitin-mediated activation of PtpA. Altogether, our results provide further evidence supporting that PtpA could be the bacterial factor that dephosphorylates hTFPα during infection, potentially affecting its mitochondrial localization or ß-oxidation activity.


Assuntos
Proteínas de Bactérias , Proteína Mitocondrial Trifuncional , Mycobacterium tuberculosis , Humanos , Metabolismo dos Lipídeos , Filogenia , Ubiquitinas , Proteína Mitocondrial Trifuncional/metabolismo , Proteínas de Bactérias/metabolismo
10.
Heliyon ; 9(3): e13875, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36845037

RESUMO

Understanding transmission routes of SARS-CoV-2 is crucial to establish effective interventions in healthcare institutions. Although the role of surface contamination in SARS-CoV-2 transmission has been controversial, fomites have been proposed as a contributing factor. Longitudinal studies about SARS-CoV-2 surface contamination in hospitals with different infrastructure (presence or absence of negative pressure systems) are needed to improve our understanding of their effectiveness on patient healthcare and to advance our knowledge about the viral spread. We performed a one-year longitudinal study to evaluate surface contamination with SARS-CoV-2 RNA in reference hospitals. These hospitals have to admit all COVID-19 patients from public health services that require hospitalization. Surfaces samples were molecular tested for SARS-CoV-2 RNA presence considering three factors: the dirtiness by measuring organic material, the circulation of a high transmissibility variant, and the presence or absence of negative pressure systems in hospitalized patients' rooms. Our results show that: (i) There is no correlation between the amount of organic material dirtiness and SARS-CoV-2 RNA detected on surfaces; (ii) SARS-CoV-2 high transmissible Gamma variant introduction significantly increased surface contamination; (iii) the hospital with negative pressure systems was associated with lower levels of SARS-CoV-2 surface contamination and, iv) most environmental samples recovered from contaminated surfaces were assigned as non-infectious. This study provides data gathered for one year about the surface contamination with SARS-CoV-2 RNA sampling hospital settings. Our results suggest that spatial dynamics of SARS-CoV-2 RNA contamination varies according with the type of SARS-CoV-2 genetic variant and the presence of negative pressure systems. In addition, we showed that there is no correlation between the amount of organic material dirtiness and the quantity of viral RNA detected in hospital settings. Our findings suggest that SARS CoV-2 RNA surface contamination monitoring might be useful for the understanding of SARS-CoV-2 dissemination with impact on hospital management and public health policies. This is of special relevance for the Latin-American region where ICU rooms with negative pressure are insufficient.

11.
Virus Res ; 311: 198688, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35074431

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) is caused by a novel member of the family Coronaviridae, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies revealed the emergence of virus variants with substitutions in the spike and/or nucleocapsid and RNA-dependent RNA polymerase proteins that are partly responsible for enhanced transmission and reduced or escaped anti-SARS-CoV-2 antibodies that may reduce the efficacy of antibodies and vaccines against the first identified SARS-CoV-2 strains. In order to gain insight into the emergence and evolution of SARS-CoV-2 variants circulating in the South American region, a comprehensive phylogenetic study of SARS-CoV-2 variants circulating in this region was performed. The results of these studies revealed sharp increase in virus effective population size from March to April of 2020. At least 62 different genotypes were found to circulate in this region. Variants of concern (VOCs) Alpha, Beta, Gamma and Delta co-circulate in the region, together with variants of interest (VOIs) Lambda, Mu and Zeta. Most of SARS-CoV-2 variants circulating in the South American region belongs to B.1 genotypes and have substitutions in the spike and/or nucleocapsid and polymerase proteins that confer high transmissibility and/or immune resistance. 148 amino acid positions of the spike protein and 70 positions of the nucleocapsid were found to have substitutions in different variants isolated in the region by comparison with reference strain Wuhan-Hu-1. Significant differences in codon usage among spike genes of SARS-CoV-2 strains circulating in South America was found, which can be linked to SARS-CoV-2 genotypes.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/classificação , SARS-CoV-2/genética , América do Sul , Glicoproteína da Espícula de Coronavírus/genética
12.
PLoS One ; 16(6): e0251820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086690

RESUMO

Diapause is a reversible developmental arrest faced by many organisms in harsh environments. Annual killifish present this mechanism in three possible stages of development. Killifish are freshwater teleosts from Africa and America that live in ephemeral ponds, which dry up in the dry season. The juvenile and adult populations die, and the embryos remain buried in the bottom mud until the next rainy season. Thus, species survival is entirely embryo-dependent, and they are perhaps the most remarkable extremophile organisms among vertebrates. The aim of the present study was to gather information about embryonic diapauses with the use of a "shotgun" proteomics approach in diapause III and prehatching Austrolebias charrua embryos. Our results provide insight into the molecular mechanisms of diapause III. Data are available via ProteomeXchange with identifier PXD025196. We detected a diapause-dependent change in a large group of proteins involved in different functions, such as metabolic pathways and stress tolerance, as well as proteins related to DNA repair and epigenetic modifications. Furthermore, we observed a diapause-associated switch in cytoskeletal proteins. This first glance into global protein expression differences between prehatching and diapause III could provide clues regarding the induction/maintenance of this developmental arrest in A. charrua embryos. There appears to be no single mechanism underlying diapause and the present data expand our knowledge of the molecular basis of diapause regulation. This information will be useful for future comparative approaches among different diapauses in annual killifish and/or other organisms that experience developmental arrest.


Assuntos
Ciprinodontiformes/metabolismo , Ciprinodontiformes/fisiologia , Diapausa/fisiologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Adaptação Fisiológica/fisiologia , África , Animais , Proteômica/métodos , Estações do Ano
13.
J Virol Methods ; 289: 114035, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33285190

RESUMO

The pandemic caused by SARS-CoV-2 has triggered an extraordinary collapse of healthcare systems and hundred thousand of deaths worldwide. Following the declaration of the outbreak as a Public Health Emergency of International Concern by the World Health Organization (WHO) on January 30th, 2020, it has become imperative to develop diagnostic tools to reliably detect the virus in infected patients. Several methods based on real time reverse transcription polymerase chain reaction (RT-qPCR) for the detection of SARS-CoV-2 genomic RNA have been developed. In addition, these methods have been recommended by the WHO for laboratory diagnosis. Since most of these protocols are based on the use of fluorogenic probes and one-step reagents (cDNA synthesis followed by PCR amplification in the same tube), these techniques can be difficult to perform given the limited supply of reagents in low- and middle-income countries. In order to develop an inexpensive SARS-CoV-2 detection protocol using available resources we evaluated the SYBR Green based detection of SARS-CoV-2 to establish a suitable assay. To do so, we adapted one of the WHO recommended TaqMan-based one-step real time PCR protocols (from the University of Hong Kong) to SYBR Green. Our results indicate that SYBR-Green detection of ORF1b-nsp14 target represents a reliable cost-effective alternative to increase the testing capacity.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , Técnicas de Laboratório Clínico/métodos , Humanos , Pandemias , Reação em Cadeia da Polimerase em Tempo Real/métodos
14.
Viruses ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34578382

RESUMO

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/transmissão , Genoma Viral , Humanos , Mutação , Filogeografia , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , Uruguai
15.
FEMS Microbiol Lett ; 366(14)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397847

RESUMO

We present experimental data that complement and validate some biochemical features at the genome level in the UVC-resistant Antarctic bacterium Hymenobacter sp. UV11 strain. The genome was sequenced, assembled and annotated. It has 6 096 246 bp, a GC content of 60.6% and 5155 predicted genes. The secretome analysis, by combining in silico predictions with shotgun proteomics data, showed that UV11 strain produces extracellular proteases and carbohydrases with potential biotechnological uses. We observed the formation of outer membrane vesicles, mesosomes and carbon-storage compounds by using transmission electron microscopy. The in silico analysis of the genome revealed the presence of genes involved in the metabolism of glycogen-like molecules and starch. By HPLC-UV-Vis analysis and 1H-NMR spectra, we verified that strain UV11 produces xanthophyll-like carotenoids such as 2'-hydroxyflexixanthin, and the in silico analysis showed that this bacterium has genes involved in the biosynthesis of cathaxanthin, zeaxanthin and astaxanthin. We also found genes involved in the repair of UV-damaged DNA such as a photolyase, the nucleotide excision repair system and the production of ATP-dependent proteases that are important cellular components involved in the endurance to physiological stresses. This information will help us to better understand the ecological role played by Hymenobacter strains in the extreme Antarctic environment.


Assuntos
Cytophagaceae/genética , Cytophagaceae/metabolismo , Genoma Bacteriano , Genômica , Regiões Antárticas , Cromatografia Líquida de Alta Pressão , Biologia Computacional/métodos , Cytophagaceae/classificação , Cytophagaceae/isolamento & purificação , Genômica/métodos , Redes e Vias Metabólicas , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Tolerância a Radiação
16.
Int J Parasitol ; 48(13): 979-992, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30261184

RESUMO

Parasitic flatworms have complex neuromuscular systems that serve important functions in their life cycles. However, our understanding of neurotransmission in parasitic flatworms is limited. Pioneering studies have suggested the presence of several classical neurotransmitter systems, but their molecular components have not been characterized in most cases. Because these components are conserved in bilaterian animals, we searched the genomes of parasitic flatworms for orthologs of genes required for neurotransmitter synthesis, vesicular transport, reuptake, and reception. Our results indicate that tapeworms have lost the genes that are specifically required in other animals for synaptic signaling using the classical neurotransmitters dopamine, tyramine, octopamine, histamine and gamma-aminobutyric acid (GABA). These results imply that these signaling pathways are either absent in these parasites, or that they require completely different molecular components in comparison with other animals. The orthologs of genes related to histaminergic and GABA signaling are also missing in trematodes (although Schistosoma-specific histaminergic receptors have been previously described). In contrast, conserved genes required for glutamatergic, serotonergic and cholinergic signaling could be found in all analyzed flatworms. We analyzed the expression of selected markers of each pathway in the tapeworm Hymenolepis microstoma by whole-mount in situ hybridization. Each marker was specifically expressed in the nervous system, although with different patterns. In addition, we analyzed the expression of proprotein convertase 2 as a marker of peptidergic cells. This gene showed the widest expression in the nervous system, but was also expressed in other tissues, suggesting additional roles of peptidergic signaling in tapeworm development and reproduction.


Assuntos
Cestoides/fisiologia , Neurotransmissores/fisiologia , Transmissão Sináptica/fisiologia , Sequência de Aminoácidos , Animais , Biomarcadores , Cestoides/classificação , Cestoides/genética , Imunofluorescência , Gastrópodes/química , Gastrópodes/genética , Gastrópodes/parasitologia , Genoma Helmíntico , Hibridização In Situ , Vias Neurais/fisiologia , Neurotransmissores/genética , Filogenia , Alinhamento de Sequência , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Int J Parasitol ; 46(11): 709-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388856

RESUMO

Neuropeptide mediated signalling is an ancient mechanism found in almost all animals and has been proposed as a promising target for the development of novel drugs against helminths. However, identification of neuropeptides from genomic data is challenging, and knowledge of the neuropeptide complement of parasitic flatworms is still fragmentary. In this work, we have developed an evolution-based strategy for the de novo discovery of neuropeptide precursors, based on the detection of localised sequence conservation between possible prohormone convertase cleavage sites. The method detected known neuropeptide precursors with good precision and specificity in the models Drosophila melanogaster and Caenorhabditis elegans. Furthermore, it identified novel putative neuropeptide precursors in nematodes, including the first description of allatotropin homologues in this phylum. Our search for neuropeptide precursors in the genomes of parasitic flatworms resulted in the description of 34 conserved neuropeptide precursor families, including 13 new ones, and of hundreds of new homologues of known neuropeptide precursor families. Most neuropeptide precursor families show a wide phylogenetic distribution among parasitic flatworms and show little similarity to neuropeptide precursors of other bilaterian animals. However, we could also find orthologs of some conserved bilaterian neuropeptides including pyrokinin, crustacean cardioactive peptide, myomodulin, neuropeptide-Y, neuropeptide KY and SIF-amide. Finally, we determined the expression patterns of seven putative neuropeptide precursor genes in the protoscolex of Echinococcus multilocularis. All genes were expressed in the nervous system with different patterns, indicating a hidden complexity of peptidergic signalling in cestodes.


Assuntos
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Genoma Helmíntico , Neuropeptídeos/isolamento & purificação , Planárias/genética , Precursores de Proteínas/isolamento & purificação , Animais , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , Echinococcus multilocularis/química , Echinococcus multilocularis/genética , Proteínas de Helminto/química , Humanos , Hibridização In Situ , Neuropeptídeos/química , Neuropeptídeos/genética , Filogenia , Planárias/química , Precursores de Proteínas/química , Precursores de Proteínas/genética , Sensibilidade e Especificidade , Alinhamento de Sequência , Transdução de Sinais
18.
Acta Trop ; 158: 59-67, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26899679

RESUMO

Echinoccocus granulosus is the causative agent of Cyst Echinococcosis, a zoonotic infection affecting humans and livestock representing a public health and an economic burden for several countries. Despite decades of investigation an effective vaccine still remains to be found. Parasitic cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins (CAPs) have been proposed as vaccine candidates against helmith's infection. In this work we have identified two novel proteins of this superfamily expressed at the protoescoleces larval stage named EgVAL1 and EgVAL2. The open reading frame sequences were deduced. The aminoacidic sequence was analyzed and confronted against already known vertebrate' and helminth's proteins sequences in order to infer putative functions. Immunolocalization studies were also performed. The obtained data supported by immunolocalization studies and homology models suggest that these proteins could be involved in protease activity inhibition.


Assuntos
Echinococcus granulosus/química , Proteínas de Helminto/química , Proteínas de Helminto/genética , Larva/química , Sequência de Aminoácidos , Animais , Humanos , Filogenia
19.
Mol Biochem Parasitol ; 175(2): 181-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21093500

RESUMO

Tropomyosins are a family of actin-binding proteins with diverse roles in actin filament function. One of the best characterized roles is the regulation of muscle contraction. Tropomyosin isoforms can be generated from different genes, and from alternative promoters and alternative splicing from the same gene. In this work, we have isolated sequences for tropomyosin isoforms from the cestode Mesocestoides corti, and searched for tropomyosin genes and isoforms in other flatworms. Two genes are conserved in the cestodes M. corti and Echinococcus multilocularis, and in the trematode Schistosoma mansoni. Both genes have the same structure, and each gene gives rise to at least two different isoforms, a high molecular weight (HMW) and a low molecular weight (LMW) one. Because most exons are duplicated and spliced in a mutually exclusive fashion, isoforms from one gene only share one exon and are highly divergent. The gene duplication preceded the divergence of neodermatans and the planarian Schmidtea mediterranea. Further duplications occurred in Schmidtea, coupled to the selective loss of duplicated exons, resulting in genes that only code for HMW or LMW isoforms. A polyclonal antibody raised against a HMW tropomyosin from Echinococcus granulosus was demonstrated to specifically recognize HMW tropomyosin isoforms of M. corti, and used to study their expression during segmentation. HMW tropomyosins are expressed in muscle layers, with very low or absent levels in other tissues. No expression of HMW tropomyosins is present in early or late genital primordia, and expression only begins once muscle fibers develop in the genital ducts. Therefore, HMW tropomyosins are markers for the development of muscles during the final differentiation of genital primordia.


Assuntos
Mesocestoides/crescimento & desenvolvimento , Mesocestoides/genética , Tropomiosina/biossíntese , Animais , Sequência Conservada , DNA de Helmintos/química , DNA de Helmintos/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/genética , Evolução Molecular , Duplicação Gênica , Camundongos , Dados de Sequência Molecular , Músculos/química , Filogenia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Schistosoma mansoni/genética , Análise de Sequência de DNA , Homologia de Sequência , Tropomiosina/genética , Turbelários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA