Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Cell ; 173(6): 1508-1519.e18, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29754816

RESUMO

As predicted by the notion that sister chromatid cohesion is mediated by entrapment of sister DNAs inside cohesin rings, there is perfect correlation between co-entrapment of circular minichromosomes and sister chromatid cohesion. In most cells where cohesin loads without conferring cohesion, it does so by entrapment of individual DNAs. However, cohesin with a hinge domain whose positively charged lumen is neutralized loads and moves along chromatin despite failing to entrap DNAs. Thus, cohesin engages chromatin in non-topological, as well as topological, manners. Since hinge mutations, but not Smc-kleisin fusions, abolish entrapment, DNAs may enter cohesin rings through hinge opening. Mutation of three highly conserved lysine residues inside the Smc1 moiety of Smc1/3 hinges abolishes all loading without affecting cohesin's recruitment to CEN loading sites or its ability to hydrolyze ATP. We suggest that loading and translocation are mediated by conformational changes in cohesin's hinge driven by cycles of ATP hydrolysis.


Assuntos
Proteínas de Ciclo Celular/química , Cromátides/química , Proteínas Cromossômicas não Histona/química , DNA/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Cromatina/química , Humanos , Hidrólise , Lisina/química , Camundongos , Mutação , Proteínas Nucleares/genética , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
2.
Mol Cell ; 82(22): 4218-4231.e8, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36400008

RESUMO

POLθ promotes repair of DNA double-strand breaks (DSBs) resulting from collapsed forks in homologous recombination (HR) defective tumors. Inactivation of POLθ results in synthetic lethality with the loss of HR genes BRCA1/2, which induces under-replicated DNA accumulation. However, it is unclear whether POLθ-dependent DNA replication prevents HR-deficiency-associated lethality. Here, we isolated Xenopus laevis POLθ and showed that it processes stalled Okazaki fragments, directly visualized by electron microscopy, thereby suppressing ssDNA gaps accumulating on lagging strands in the absence of RAD51 and preventing fork reversal. Inhibition of POLθ DNA polymerase activity leaves fork gaps unprotected, enabling their cleavage by the MRE11-NBS1-CtIP endonuclease, which produces broken forks with asymmetric single-ended DSBs, hampering BRCA2-defective cell survival. These results reveal a POLθ-dependent genome protection function preventing stalled forks rupture and highlight possible resistance mechanisms to POLθ inhibitors.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , DNA
3.
Mol Cell ; 81(19): 4008-4025.e7, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34508659

RESUMO

BRCA1/2 mutant tumor cells display an elevated mutation burden, the etiology of which remains unclear. Here, we report that these cells accumulate ssDNA gaps and spontaneous mutations during unperturbed DNA replication due to repriming by the DNA primase-polymerase PRIMPOL. Gap accumulation requires the DNA glycosylase SMUG1 and is exacerbated by depletion of the translesion synthesis (TLS) factor RAD18 or inhibition of the error-prone TLS polymerase complex REV1-Polζ by the small molecule JH-RE-06. JH-RE-06 treatment of BRCA1/2-deficient cells results in reduced mutation rates and PRIMPOL- and SMUG1-dependent loss of viability. Through cellular and animal studies, we demonstrate that JH-RE-06 is preferentially toxic toward HR-deficient cancer cells. Furthermore, JH-RE-06 remains effective toward PARP inhibitor (PARPi)-resistant BRCA1 mutant cells and displays additive toxicity with crosslinking agents or PARPi. Collectively, these studies identify a protective and mutagenic role for REV1-Polζ in BRCA1/2 mutant cells and provide the rationale for using REV1-Polζ inhibitors to treat BRCA1/2 mutant tumors.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Primase/metabolismo , Replicação do DNA , DNA de Neoplasias/biossíntese , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/metabolismo , Neoplasias/enzimologia , Nucleotidiltransferases/metabolismo , Reparo de DNA por Recombinação , Animais , Antineoplásicos/farmacologia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , DNA Primase/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Feminino , Células HEK293 , Humanos , Camundongos Nus , Enzimas Multifuncionais/genética , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cell ; 67(5): 867-881.e7, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28757209

RESUMO

Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.


Assuntos
Proteína BRCA2/metabolismo , Replicação do DNA , DNA/biossíntese , Rad51 Recombinase/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Proteína BRCA2/genética , Sítios de Ligação , DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Polimerase I/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Feminino , Instabilidade Genômica , Humanos , Proteína Homóloga a MRE11 , Masculino , Mutação , Ligação Proteica , Rad51 Recombinase/genética , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Proteínas de Xenopus/genética , Xenopus laevis/genética
5.
Mol Cell ; 68(2): 414-430.e8, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053959

RESUMO

To ensure the completion of DNA replication and maintenance of genome integrity, DNA repair factors protect stalled replication forks upon replication stress. Previous studies have identified a critical role for the tumor suppressors BRCA1 and BRCA2 in preventing the degradation of nascent DNA by the MRE11 nuclease after replication stress. Here we show that depletion of SMARCAL1, a SNF2-family DNA translocase that remodels stalled forks, restores replication fork stability and reduces the formation of replication stress-induced DNA breaks and chromosomal aberrations in BRCA1/2-deficient cells. In addition to SMARCAL1, other SNF2-family fork remodelers, including ZRANB3 and HLTF, cause nascent DNA degradation and genomic instability in BRCA1/2-deficient cells upon replication stress. Our observations indicate that nascent DNA degradation in BRCA1/2-deficient cells occurs as a consequence of MRE11-dependent nucleolytic processing of reversed forks generated by fork remodelers. These studies provide mechanistic insights into the processes that cause genome instability in BRCA1/2-deficient cells.


Assuntos
Proteína BRCA2/deficiência , Quebras de DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Humanos , Proteína Homóloga a MRE11 , Fatores de Transcrição/genética
6.
Curr Treat Options Oncol ; 25(4): 465-495, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38372853

RESUMO

OPINION STATEMENT: Cardiotoxicity has emerged as a serious outcome catalyzed by various therapeutic targets in the field of cancer treatment, which includes chemotherapy, radiation, and targeted therapies. The growing significance of cancer drug-induced cardiotoxicity (CDIC) and radiation-induced cardiotoxicity (CRIC) necessitates immediate attention. This article intricately unveils how cancer treatments cause cardiotoxicity, which is exacerbated by patient-specific risks. In particular, drugs like anthracyclines, alkylating agents, and tyrosine kinase inhibitors pose a risk, along with factors such as hypertension and diabetes. Mechanistic insights into oxidative stress and topoisomerase-II-B inhibition are crucial, while cardiac biomarkers show early damage. Timely intervention and prompt treatment, especially with specific agents like dexrazoxane and beta-blockers, are pivotal in the proactive management of CDIC.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Neoplasias , Humanos , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Antineoplásicos/efeitos adversos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Antraciclinas/efeitos adversos , Neoplasias Hematológicas/complicações
7.
Nature ; 557(7703): 57-61, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29670289

RESUMO

SAMHD1 was previously characterized as a dNTPase that protects cells from viral infections. Mutations in SAMHD1 are implicated in cancer development and in a severe congenital inflammatory disease known as Aicardi-Goutières syndrome. The mechanism by which SAMHD1 protects against cancer and chronic inflammation is unknown. Here we show that SAMHD1 promotes degradation of nascent DNA at stalled replication forks in human cell lines by stimulating the exonuclease activity of MRE11. This function activates the ATR-CHK1 checkpoint and allows the forks to restart replication. In SAMHD1-depleted cells, single-stranded DNA fragments are released from stalled forks and accumulate in the cytosol, where they activate the cGAS-STING pathway to induce expression of pro-inflammatory type I interferons. SAMHD1 is thus an important player in the replication stress response, which prevents chronic inflammation by limiting the release of single-stranded DNA from stalled replication forks.


Assuntos
Replicação do DNA , Interferon Tipo I/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Citosol/metabolismo , DNA de Cadeia Simples/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Interferon Tipo I/imunologia , Proteína Homóloga a MRE11/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , RecQ Helicases/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/deficiência
8.
Bioessays ; 43(1): e2000181, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165968

RESUMO

During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid-blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing replication assembly origins at all available sites. Recently, it was shown that histone H1 imposes a non-permissive chromatin configuration preventing replication origin assembly on somatic nuclei. This somatic state can be erased by SSRP1, a subunit of the FACT complex. Here, we further develop the hypothesis that this novel form of epigenetic memory might impact on different areas of vertebrate biology going from nuclear reprogramming to cancer development.


Assuntos
Histonas , Origem de Replicação , Blástula/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/genética , Feminino , Proteínas de Grupo de Alta Mobilidade , Histonas/genética , Histonas/metabolismo , Humanos , Gravidez , Fatores de Elongação da Transcrição
9.
J Am Soc Nephrol ; 33(10): 1864-1875, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35820785

RESUMO

BACKGROUND: Mutations in SLC37A4, which encodes the intracellular glucose transporter G6PT, cause the rare glycogen storage disease type 1b (GSD1b). A long-term consequence of GSD1b is kidney failure, which requires KRT. The main protein markers of proximal tubule function, including NaPi2A, NHE3, SGLT2, GLUT2, and AQP1, are downregulated as part of the disease phenotype. METHODS: We utilized an inducible mouse model of GSD1b, TM-G6PT-/-, to show that glycogen accumulation plays a crucial role in altering proximal tubule morphology and function. To limit glucose entry into proximal tubule cells and thus to prevent glycogen accumulation, we administered an SGLT2-inhibitor, dapagliflozin, to TM-G6PT-/- mice. RESULTS: In proximal tubule cells, G6PT suppression stimulates the upregulation and activity of hexokinase-I, which increases availability of the reabsorbed glucose for intracellular metabolism. Dapagliflozin prevented glycogen accumulation and improved kidney morphology by promoting a metabolic switch from glycogen synthesis toward lysis and by restoring expression levels of the main proximal tubule functional markers. CONCLUSION: We provide proof of concept for the efficacy of dapagliflozin in preserving kidney function in GSD1b mice. Our findings could represent the basis for repurposing this drug to treat patients with GSD1b.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Túbulos Renais Proximais , Camundongos , Animais , Transportador 2 de Glucose-Sódio/metabolismo , Túbulos Renais Proximais/metabolismo , Rim/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/metabolismo , Glicogênio/metabolismo
10.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835341

RESUMO

SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.


Assuntos
Bacteriófagos , COVID-19 , Vírus , Humanos , SARS-CoV-2/genética , RNA , Bacteriófagos/genética , Aminoácidos , Proteômica , Vírus/genética , Microscopia de Fluorescência
11.
Pflugers Arch ; 474(7): 733-741, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35397662

RESUMO

Renal micropuncture, which requires the direct access to the renal tubules, has for long time been the technique of choice to measure the single nephron glomerular filtration rate (SNGFR) in animal models. This approach is challenging by virtue of complex animal preparation and numerous technically difficult steps. The introduction of intravital multiphoton microscopy (MPM) offers another approach to the measure of the SNGFR by mean of the high laser-tissue penetration and the optical sectioning capacity. Previous MPM studies measuring SNGFR in vivo relied on fast full-frame acquisition during the filtration process obtainable with high performance resonant scanners. In this study, we describe an innovative linescan-based MPM method. The new method can discriminate SNGFR variations both in conditions of low and high glomerular filtration, and shows results comparable to conventional micropuncture both for rats and mice. Moreover, this novel approach has improved spatial and time resolution and is faster than previous methods, thus enabling the investigation of SNGFR from more tubules and improving options for data-analysis.


Assuntos
Microscopia , Néfrons , Animais , Taxa de Filtração Glomerular , Rim , Túbulos Renais , Camundongos , Punções , Ratos
12.
Mol Imaging ; 2022: 7908357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418808

RESUMO

Accumulation of uremic toxins may lead to the life-threatening condition "uremic syndrome" in patients with advanced chronic kidney disease (CKD) requiring renal replacement therapy. Clinical evaluation of proximal tubular secretion of organic cations (OC), of which some are uremic toxins, is desired, but difficult. The biomedical knowledge on OC secretion and cellular transport partly relies on studies using the fluorescent tracer 4-dimethylaminostyryl)-N-methylpyridinium (ASP+), which has been used in many studies of renal excretion mechanisms of organic ions and which could be a candidate as a PET tracer. This study is aimed at expanding the knowledge of the tracer characteristics of ASP+ by recording the distribution and intensity of ASP+ signals in vivo both by fluorescence and by positron emission tomography (PET) imaging and at investigating if the fluorescence signal of ASP+ is influenced by the presence of albumin. Two-photon in vivo microscopy of male Münich Wistar Frömter rats showed that a bolus injection of ASP+ conferred a fluorescence signal to the blood plasma lasting for about 30 minutes. In the renal proximal tubule, the bolus resulted in a complex pattern of fluorescence including a rapid and strong transient signal at the brush border, a very low signal in the luminal fluid, and a slow transient intracellular signal. PET imaging using 11C-labelled ASP+ showed accumulation in the liver, heart, and kidney. Fluorescence emission spectra recorded in vitro of ASP+ alone and in the presence of albumin using both 1-photon excitation and two-photon excitation showed that albumin strongly enhance the emission from ASP+ and induce a shift of the emission maximum from 600 to 570 nm. Conclusion. The renal pattern of fluorescence observed from ASP+ in vivo is likely affected by the local concentration of albumin, and quantification of ASP+ fluorescent signals in vivo cannot be directly translated to ASP+ concentrations.


Assuntos
Albuminas , Rim , Albuminas/metabolismo , Animais , Cátions/metabolismo , Fluorescência , Humanos , Rim/diagnóstico por imagem , Rim/metabolismo , Masculino , Compostos de Piridínio , Ratos , Ratos Wistar
13.
Mol Cell ; 55(1): 123-37, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24910095

RESUMO

NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase. NCOA4(-/-) MEFs display unscheduled origin activation and reduced interorigin distance; this results in replication stress, as shown by the presence of fork stalling, reduction of fork speed, and premature senescence. Together, our findings indicate that NCOA4 acts as a regulator of DNA replication origins that helps prevent inappropriate DNA synthesis and replication stress.


Assuntos
Replicação do DNA , Coativadores de Receptor Nuclear/fisiologia , Origem de Replicação , Animais , Células Cultivadas , Senescência Celular , Células HeLa , Humanos , Camundongos , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis
14.
J Am Soc Nephrol ; 32(6): 1339-1354, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33727367

RESUMO

BACKGROUND: MicroRNAs (miRNAs), formed by cleavage of pre-microRNA by the endoribonuclease Dicer, are critical modulators of cell function by post-transcriptionally regulating gene expression. METHODS: Selective ablation of Dicer in AQP2-expressing cells (DicerAQP2Cre+ mice) was used to investigate the role of miRNAs in the kidney collecting duct of mice. RESULTS: The mice had severe polyuria and nephrogenic diabetes insipidus, potentially due to greatly reduced AQP2 and AQP4 levels. Although epithelial sodium channel levels were decreased in cortex and increased in inner medulla, amiloride-sensitive sodium reabsorption was equivalent in DicerAQP2Cre+ mice and controls. Small-RNA sequencing and proteomic analysis revealed 31 and 178 significantly regulated miRNAs and proteins, respectively. Integrated bioinformatic analysis of the miRNAome and proteome suggested alterations in the epigenetic machinery and various transcription factors regulating AQP2 expression in DicerAQP2Cre+ mice. The expression profile and function of three miRNAs (miR-7688-5p, miR-8114, and miR-409-3p) whose predicted targets were involved in epigenetic control (Phf2, Kdm5c, and Kdm4a) or transcriptional regulation (GATA3, GATA2, and ELF3) of AQP2 were validated. Luciferase assays could not demonstrate direct interaction of AQP2 or the three potential transcription factors with miR-7688-5p, miR-8114, and miR-409-3p. However, transfection of respective miRNA mimics reduced AQP2 expression. Chromatin immunoprecipitation assays demonstrated decreased Phf2 and significantly increased Kdm5c interactions at the Aqp2 gene promoter in DicerAQP2Cre+ mice, resulting in decreased RNA Pol II association. CONCLUSIONS: Novel evidence indicates miRNA-mediated epigenetic regulation of AQP2 expression.


Assuntos
Aquaporina 2/genética , Epigênese Genética/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Ribonuclease III/genética , Animais , Aquaporina 2/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Regulação para Baixo , Canais Epiteliais de Sódio/metabolismo , Feminino , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA3/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/genética , Túbulos Renais Coletores/fisiologia , Masculino , Camundongos , Poliúria/genética , Poliúria/metabolismo , Proteoma , Processamento Pós-Transcricional do RNA , Reabsorção Renal , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
EMBO J ; 35(9): 942-60, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26933123

RESUMO

The generation of multiciliated cells (MCCs) is required for the proper function of many tissues, including the respiratory tract, brain, and germline. Defects in MCC development have been demonstrated to cause a subclass of mucociliary clearance disorders termed reduced generation of multiple motile cilia (RGMC). To date, only two genes, Multicilin (MCIDAS) and cyclin O (CCNO) have been identified in this disorder in humans. Here, we describe mice lacking GEMC1 (GMNC), a protein with a similar domain organization as Multicilin that has been implicated in DNA replication control. We have found that GEMC1-deficient mice are growth impaired, develop hydrocephaly with a high penetrance, and are infertile, due to defects in the formation of MCCs in the brain, respiratory tract, and germline. Our data demonstrate that GEMC1 is a critical regulator of MCC differentiation and a candidate gene for human RGMC or related disorders.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular , Cílios/genética , Cílios/fisiologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Camundongos , Camundongos Knockout
16.
Mol Cell ; 45(1): 99-110, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22244334

RESUMO

The chemical identity and integrity of the genome is challenged by the incorporation of ribonucleoside triphosphates (rNTPs) in place of deoxyribonucleoside triphosphates (dNTPs) during replication. Misincorporation is limited by the selectivity of DNA replicases. We show that accumulation of ribonucleoside monophosphates (rNMPs) in the genome causes replication stress and has toxic consequences, particularly in the absence of RNase H1 and RNase H2, which remove rNMPs. We demonstrate that postreplication repair (PRR) pathways-MMS2-dependent template switch and Pol ζ-dependent bypass-are crucial for tolerating the presence of rNMPs in the chromosomes; indeed, we show that Pol ζ efficiently replicates over 1-4 rNMPs. Moreover, cells lacking RNase H accumulate mono- and polyubiquitylated PCNA and have a constitutively activated PRR. Our findings describe a crucial function for RNase H1, RNase H2, template switch, and translesion DNA synthesis in overcoming rNTPs misincorporated during DNA replication, and may be relevant for the pathogenesis of Aicardi-Goutières syndrome.


Assuntos
Reparo do DNA , DNA/química , Ribonuclease H/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Replicação do DNA , Instabilidade Genômica , Antígeno Nuclear de Célula em Proliferação , Saccharomyces cerevisiae/genética , Estresse Fisiológico , Ubiquitinação
17.
EMBO Rep ; 18(6): 1000-1012, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28389464

RESUMO

Camptothecin-induced locking of topoisomerase 1 on DNA generates a physical barrier to replication fork progression and creates topological stress. By allowing replisome rotation, absence of the Tof1/Csm3 complex promotes the conversion of impending topological stress to DNA catenation and causes camptothecin hypersensitivity. Through synthetic viability screening, we discovered that histone H4 K16 deacetylation drives the sensitivity of yeast cells to camptothecin and that inactivation of this pathway by mutating H4 K16 or the genes SIR1-4 suppresses much of the hypersensitivity of tof1∆ strains towards this agent. We show that disruption of rDNA or telomeric silencing does not mediate camptothecin resistance but that disruption of Sir1-dependent chromatin domains is sufficient to suppress camptothecin sensitivity in wild-type and tof1∆ cells. We suggest that topoisomerase 1 inhibition in proximity of these domains causes topological stress that leads to DNA hypercatenation, especially in the absence of the Tof1/Csm3 complex. Finally, we provide evidence of the evolutionarily conservation of this mechanism.


Assuntos
Camptotecina/farmacologia , Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Benzamidas/farmacologia , Camptotecina/metabolismo , Proteínas de Ciclo Celular , Dano ao DNA , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/genética , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Naftóis/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
18.
Genesis ; 55(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095613

RESUMO

Faithful DNA replication, coupled with accurate repair of DNA damage, is essential to maintain genome stability and relies on different DNA metabolism genes. Many of these genes are involved in the assembly of replication origins, in the coordination of DNA repair to protect replication forks progression in the presence of DNA damage and in the replication of repetitive chromatin regions. Some DNA metabolism genes are essential in higher eukaryotes, suggesting the existence of specialized mechanisms of repair and replication in organisms with complex genomes. The impact on cell survival of many of these genes has so far precluded in depth molecular analysis of their function. The cell-free Xenopus laevis egg extract represents an ideal system to overcome survival issues and to facilitate the biochemical study of replication-associated functions of essential proteins in vertebrate organisms. Here, we will discuss how Xenopus egg extracts have been used to study cellular and molecular processes, such as DNA replication and DNA repair. In particular, we will focus on innovative imaging and proteomic-based experimental approaches to characterize the molecular function of a number of essential DNA metabolism factors involved in the duplication of complex vertebrate genomes.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Oócitos/metabolismo , Animais , Núcleo Celular/genética , Sistema Livre de Células , Cromatina/genética , Proteínas de Ligação a DNA , Genoma , Oócitos/crescimento & desenvolvimento , Xenopus/genética , Xenopus/crescimento & desenvolvimento
19.
Prog Mol Subcell Biol ; 56: 515-539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28840251

RESUMO

The centromere is the genetic locus that specifies the site of kinetochore assembly, where the chromosome will attach to the kinetochore microtubule. The pericentromere is the physical region responsible for the geometry of bi-oriented sister kinetochores in metaphase. In budding yeast the 125 bp point centromere is sufficient to specify kinetochore assembly. The flanking region is enriched (3X) in cohesin and condensin relative to the remaining chromosome arms. The enrichment spans about 30-50 kb around each centromere. We refer to the flanking chromatin as the pericentromere in yeast. In mammals, a 5-10 Mb region dictates where the kinetochore is built. The kinetochore interacts with a very small fraction of DNA on the surface of the centromeric region. The remainder of the centromere lies between the sister kinetochores. This is typically called centromere chromatin. The chromatin sites that directly interface to microtubules cannot be identified due to the repeated sequence within the mammalian centromere. However in both yeast and mammals, the total amount of DNA between the sites of microtubule attachment in metaphase is highly conserved. In yeast the 16 chromosomes are clustered into a 250 nm diameter region, and 800 kb (16 × 50 kb) or ~1 Mb of DNA lies between sister kinetochores. In mammals, 5-10 Mb lies between sister kinetochores. In both organisms the sister kinetochores are separated by about 1 µm. Thus, centromeres of different organisms differ in how they specify kinetochore assembly, but there may be important centromere chromatin functions that are conserved throughout phylogeny. Recently, centromeric chromatin has been reconstituted in vitro using alpha satellite DNA revealing unexpected features of centromeric DNA organization, replication, and response to stress. We will focus on the conserved features of centromere in this review.


Assuntos
Centrômero/química , Centrômero/metabolismo , Animais , Cromatina , Cinetocoros , Microtúbulos , Saccharomyces cerevisiae
20.
EMBO J ; 30(3): 546-55, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21157431

RESUMO

Ataxia telangiectasia (A-T) is a human disease caused by ATM deficiency characterized among other symptoms by radiosensitivity, cancer, sterility, immunodeficiency and neurological defects. ATM controls several aspects of cell cycle and promotes repair of double strand breaks (DSBs). This probably accounts for most of A-T clinical manifestations. However, an impaired response to reactive oxygen species (ROS) might also contribute to A-T pathogenesis. Here, we show that ATM promotes an anti-oxidant response by regulating the pentose phosphate pathway (PPP). ATM activation induces glucose-6-phosphate dehydrogenase (G6PD) activity, the limiting enzyme of the PPP responsible for the production of NADPH, an essential anti-oxidant cofactor. ATM promotes Hsp27 phosphorylation and binding to G6PD, stimulating its activity. We also show that ATM-dependent PPP stimulation increases nucleotide production and that G6PD-deficient cells are impaired for DSB repair. These data suggest that ATM protects cells from ROS accumulation by stimulating NADPH production and promoting the synthesis of nucleotides required for the repair of DSBs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Via de Pentose Fosfato/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Células Cultivadas , Ensaio Cometa , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , DNA Complementar/genética , Glucosefosfato Desidrogenase/genética , Proteínas de Choque Térmico HSP27/metabolismo , Histonas/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imunoprecipitação , Indóis , Via de Pentose Fosfato/genética , Fosforilação , Interferência de RNA , Espectrofotometria Ultravioleta , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA